Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Extending QMBE Language with Clustering

Published: 01 October 2013 Publication History

Abstract

Business Intelligence BI is an important area of the Decision Support Systems DSS discipline. Over the past years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining DM field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. This creates a gap between DM and BI systems. With the purpose of closing this gap a new DM language for BI, named as Query-Models-By-Example QMBE, was envisaged and implemented with success, but addressing only classification rules. This paper presents an extension of QMBE language to include clustering. This represents one more step towards the integration of DM with BI, which constitutes an important issue.

References

[1]
Apte, C., Grossman, E., Pednault, E. P., Rosen, B. K., Tipu, F. A., & White, B. 1999. Probabilistic estimation-based data mining for discovering insurance risks. IEEE Intelligent Systems, 146, 49-58.
[2]
Arnott, D., & Pervan, G. 2008. Eigth key issues for the decision support systems discipline. Decision Support Systems, 443, 657-672.
[3]
Azevedo, A., & Santos, M. F. 2012a. Closing the gap between data mining and business users of business intelligence systems: A design science approach. International Journal of Business Intelligence Research, 34, 14-53.
[4]
Azevedo, A., & Santos, M. F. 2012b. Binding data mining to final business users of business intelligence systems. In Proceedings of INTELLI 2012: The First International Conference on Intelligent Systems and Applications, Mont Blanc, France pp. 7-12.
[5]
Bhandari, I. C. 1997. Advanced scout: Data mining and knowledge discovery in NBA data. Data Mining and Knowledge Discovery, 11, 121-125.
[6]
Bonchi, F., Giannotti, F., Lucchesse, C., Orlando, S., Perego, R., & Trasarti, R. 2007. On interactive pattern mining from relational databases. In S. Dzeroski, & J. Struyf, Lecture Notes in Computer Science: Vol. 4747, Knowledge Discovery in Inductive Databases - 5th International Workshop KDID 2006 pp. 42-62. Berlin, Heidelberg: Springer-Verlag.
[7]
Botta, M., Boulicaut, J., Masson, C., & Meo, R. 2004. Query languages supporting descriptive rule mining: A comparative study. In R. Meo, P. Lanzi, & M. Klemettinen Eds., Lecture Notes on Artificial Intelligence: Vol. 2682, Database Support for Data Mining Applications - Discovering Knowledge with Inductive Queries pp. 24-51. Berlin, Heidelberg, Germany: Springer-Verlag.
[8]
Boulicaut, J., Klemettinen, M., & Mannila, H. 1999. Modeling KDD processes within the inductive database framework. In M. Mohania, Tjoa, & A. M. Eds., Lecture Notes on Computer Science: Vol. 1676, Data Warehousing and knowledge Discovery - 1st International Conferense DaWak99 pp. 193-202. Berlin, Heidelberg, Germany: Springer-Verlag.
[9]
Braga, D., Campi, A., Ceri, S., & Spoletini, P. 2007. XQuery layers. SIGMOD Record, 361, 25-30.
[10]
Calders, T., Goethals, B., & Prado, A. 2006. Integrating pattern mining in relational databases. In J. Füürnkranz, T. Scheffer, & M. Spiliopoulou Eds., Lecture Notes on Artificial Intelligence: Vol. 4213, Knowledge Discovery in Databases - 10th European Conference on Principles and Practice of Knowledge Discovery in Databases PKDD2006 pp. 454-461. Berlin, Heidelberg, Germany: Springer-Verlag.
[11]
Chan, P. K., Fan, W., Prodromidis, A. L., & Stolfo, S. 1999. Distributed data mining in credit card fraud detection. IEEE Intelligent Systems, 146, 67-74.
[12]
Chen, M., Han, J., & Yu, P. 1996. Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 86, 866-883.
[13]
Chiang, I., Shieh, M., Hsu, J. Y., & Wong, J. 2005. Building a medical decision support system for colon polyp screening by using fuzzy classification trees. Applied Intelligence, 221, 61-75.
[14]
Clark, T. D., Jones, M. C., & Armstrong, C. 2007. The dynamic structure of management support systems: Theory development, research, focus, and direction. Management Information Systems Quarterly, 313, 579-615.
[15]
Codd, E. F. 1970. A relational model of data for large shared data banks. Communications of the ACM, 136, 377-387.
[16]
Codd, E. F. 1971. A data base sublanguage founded on the relational calculus. In Proceedings of 1971 ACM SIGFIDET - Workshop on Data Description, Access, and Control SIGFIDET '71, San Diego, CA pp. 35-68.
[17]
Corchado, J. M., Mata, A., Paz, F. D., & Pozo, D. 2008. A case-based reaosoning system to forecast the presence of oil slicks. In Proceedings of DM 2008: IADIS European Conference on Data Mining, Amesterdam, Netherlands pp. 3-10.
[18]
Cox, K. C., Eick, S. G., Wills, G. J., & Brachman, R. 1997. Visual data mining: Recognizing telephone calling fraud. Data Mining and Knowledge Discovery, 12, 225-231.
[19]
De Raedt, L. 2002. Data mining as constraint logic programming. In A. Kakas, & F. Sadri Eds., Lecture Notes on Artificial Intelligence: Vol. 2408, Computational Logic: Logic Programming and Beyond - Essays in Honour of Robert A. kowalski - Part II pp. 526-547. Berlin, Heidelberg, Germany: Springer-Verlag.
[20]
De Raedt, L. 2003. A perspective on inductive databases. SIGKDD Explorations, 42, 69-77.
[21]
Dzeroski, S. 2007. Towards a general framework for data mining. In S. Dzeroski, & J. Struyf, Lecture Notes in Computer Science: Vol. 4747, Knowledge Discovery in Inductive Databases - 5th International Workshop, KDID 2006 pp. 259-300. Berlin, Heidelberg, Germany: Springer-Verlag.
[22]
Dzieciolowski, K., & Kina, D. 2008. Data mining in marketing acquisition campaigns. In Proceedings of the IADIS European Conference on Data Mining DM 2008 pp. 173-175.
[23]
Ezawa, K. J., & Norton, S. 1996. Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert, 115, 45-51.
[24]
Fawcett, T., & Provost, F. 1997. Adaptive fraud detection. Data Mining and Knowledge Discovery, 13, 291-316.
[25]
Fayyad, U. M. 1996. Data mining and knowledge discovery: Making sense out of data. IEEE Expert, 115, 20-25.
[26]
Fayyad, U. M., Piatetski-Shapiro, G., & Smyth, P. 1996. From data mining to knowledge discovery: An overview. In Fayyad, U., Piatetski-Shapiro, G., Smyth, P., & Uthurusamy, R. Eds., Advances in knowledge discovery and data mining pp. 1-34. Menlo Park, CA: AAAI Press/The MIT Press.
[27]
Ferreira, F. X., Cruz, D., & Henriques, P. 2009. A query by example approach for XML querying. In Proceedings of 4¿ Conferêência Ibérica em Sistemas e Tecnologias da Informação CISTI'09, Workshop em Sistemas Inteligentes e Aplicações WSIAI' 09, pp. 611-614. Póvoa do Varzim, Portugal.
[28]
Fromont, É., Blockeel, H., & Struyf, J. 2007. Integrating decision tree learning into inductive databases. In S. Dzeroski, & J. Struyf Eds., Lecture Notes in Computer Science: Vol. 4747. Knowledge Discovery in Inductive Databases - 5th International Workshop KDID 2006 pp. 81-96. Berlin, Heidelberg, Germany: Springer-Verlag.
[29]
Fung, G., & Stoeckel, J. 2007. SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information. Knowledge and Information Systems, 112, 243-258.
[30]
Gago, P., Fernandes, C., Pinto, F., & Santos, M. 2009. INTCare: On-line knowledge discovery in the intensive care unit. In Proceedings of INES 2009: 13th International Conference on Intelligent Engineering Systems, Barbados pp. 159-164.
[31]
Gago, P., & Santos, M. 2008. Towards an intelligent decision support system for intensive care units. In O. Okun, & G. Valentini Eds., Proceedings of the 18th European Conference on Artificial Intelligence Vol. 1. Workshop on Supervised and Unsupervised Ensemble Methods and their Applications pp. 21-25. Patras, Greece.
[32]
Ghosh, J., & Strehl, A. 2005. Clustering and visualization of retail market baskets. In Pal, N., & Jain, L. Eds., Advanced techniques in data mining and knowledge discovery pp. 75-102. London, UK: Springer-Verlag.
[33]
Gokhale, M., & Aslandogan, Y. 2003. A visualization oriented data mining tool for biomedical images. In Proceedings of 13th IRI 2003: IEEE International Conference on Information Reuse and Integration Las Vegas, NV pp. 219-226.
[34]
Golfarelli, M., Rizzi, S., & Cella, I. 2004. Beyond data warehousing: What`s next in business intelligence. In Proceedings of the DOLAP¿04, Washington, DC pp. 1-6.
[35]
Han, J., Fu, Y., Wang, W., Koperski, K., & Zaiane, O. 1996. DMQL: A data mining query language for relational databases. In Proceedings of ACM International Conference on Management of Data- Workshop on Research Data Mining and Knowledge Discovery SIGMOD'96, Montreal, Canada pp. 27-34.
[36]
Han, J., & Kamber, M. 2006. Data mining: Concepts and techniques. San Francisco, CA: Morgan Kaufman Publhisher.
[37]
Hand, D., Mannila, H., & Smyth, P. 2001. Principles of data mining. Cambridge, MA: The MIT Press.
[38]
Hannula, M., & Pirttimääki, V. 2003. Business intelligence empirical study on the top 50 Finnish companies. Journal of American Academy of Business, 22, 593-599.
[39]
Hoffman, T. 2009. 9 hottest skills for '09. Computerworld, 11, 26-27.
[40]
Hsu, C., Chung, H., & Huang, H. 2004. Mining skewed and sparse transactions data for personalized shopping recommendation. Machine Learning, 571-2, 35-59.
[41]
Hu, X. 2005. A data mining approach for retailing bank customer attrition analysis. Applied Intelligence, 221, 47-60.
[42]
Imielinski, T., & Virmani, A. 1999. MSQL: A query language for database mining. Data Mining and Knowledge Discovery, 34, 373-408.
[43]
Jamil, H. M. 2004. Declarative data mining using SQL3. In R. Meo, P. Lanzi, & M. Klemettinen Eds., Lecture Notes on Artificial Intelligence: Vol. 2682, Database Support for Data Mining Applications - Discovering Knowledge with Inductive Queries pp. 52-75. Berlin, Heidelberg, Germany: Springer-Verlag.
[44]
John, G. H., Miller, P., & Kerber, R. 1996. Stock selection using rule induction. IEEE Expert, 115, 52-58.
[45]
Kimball, R., & Ross, M. 2002. The data warehouse toolkit - The complete guide to dimensional modeling. Hoboken, NJ: John Wiley and Sons.
[46]
König, A., & Gratz, A. 2005. Advanced methods for the analysis of semiconductor manufacturing process data. In Pal, N., & Jain, L. Eds., Advanced techniques in data mining and knowledge discovery pp. 27-74. London, UK: Springer-Verlag.
[47]
Kramer, S. A., Jarasch, A., Kessler, K., Reckow, S., Wicker, J., & Richter, L. 2006. Inductive databases in the relational model: The data as the bridge. In F. Bonchi, & J. Boulicault Eds., Lecture Notes on Computer Science: Vol. 3933. Knowledge Discovery in Inductive Databases - 4th International Workshop KDID2005 pp. 124-138. Berlin, Heidelberg, Germany: Springer-Verlag.
[48]
Kudyba, S., & Hoptroff, R. 2001. Data mining and business intelligence: A guide to productivity. Hershey, PA: Idea Group Publishing.
[49]
Lappas, G. 2009. Machine learning and web learning: Methods and applications in societal benefit areas. In Rahman, H. Ed., Data mining applications for empowering knowledge societies pp. 76-95. Hershey, PA: IGI Publishing.
[50]
Larose, D. T. 2005. Discovering knowledge in data: An introduction to data mining. Hoboken, NJ: John Wiley & Sons.
[51]
Létourneau, S., Famimi, F., & Matwin, S. 1999. Data mining to predict aircraft component replacement. IEEE Intelligent Systems, 146, 59-65.
[52]
Liabotis, I., Theodoulidis, B., & Saraaee, M. 2006. Improving similarity search in time series using wavelets. International Journal of Data Warehousing and Mining, 22, 55-81.
[53]
Linoff, G. S. 2008. Survival data mining using relational databases. Business Intelligence Journal, 133, 20-30.
[54]
Luck, D. 2009. The importance of data within contemporary CRM. In Rahman, H. Ed., Data mining applications for empowering knowledge societies pp. 96-109. Hershey, PA: IGI Publishing.
[55]
Malerba, D., Appice, A., & Vacca, N. 2002. SDMOQL: An OQL-based data mining query language for map interpretation tasks. In Proceedings of EDBT 2002: 8th Conference on Extending Database Technology - Workshop on 'Database Technologies for Data Mining, Prague, Czech Republic pp. 3-18.
[56]
Markov, Z., & Larose, D. 2007. Data mining the web: Uncovering patterns in web content, structure, and usage. Hoboken, NJ: Wiley-Interscience.
[57]
Meo, R., & Psaila, G. 2006. An XML-based database for knowledge discovery. In Grust, T., Hööpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., & Wijsen, J. Eds., Lecture Notes in Computer Science: Vol. 4254. Current Trends in Database Technology - EDTB 2006 Workshops pp. 814-828. Berlin, Heidelberg, Germany: Springer-Verlag.
[58]
Meo, R., Psaila, G., & Ceri, S. 1998. An extension to SQL for mining association rules. Data Mining and Knowledge Discovery, 22, 195-224.
[59]
Michalewicz, Z., Schmidt, M., Michalewicz, M., & Chiriac, C. 2007. Adaptive business intelligence. Berlin, Heidelberg, Germany: Springer-Verlag.
[60]
Mielikäinen, T. 2004. Inductive databases as ranking. In Y. Kambayashi, Mohania, M., & W. Wööb Eds., Lecture Notes on Computer Science: Vol. 3181, Data Warehousing and Knowledge Discovery - 6th International Conference DaWak2004 pp. 149-158. Berlin, Heidelberg: Springer-Verlag.
[61]
Moss, L. T., & Shaku, A. 2003. Business intelligence roadmap: The complete project lifecycle for decision-support applications. Upper Saddle River, NJ: Pearson Education.
[62]
Myatt, G. J. 2007. Making sense of data - a practical guide to exploratory data analysis and data mining. Hoboken, NJ: John Wiley & Sons.
[63]
Negash, S. 2004. Business intelligence. Communications of the Association for Information Systems, 131, 177-195.
[64]
Nlenanya, I. 2009. Building an environmental GIS knowledge infrastucture. In Rahman, H. Ed., Data mining applications for empowering knowledge societies pp. 262-279. Hershey, PA: IGI Publishing.
[65]
Pan, J., Yang, Q., Yang, Y., Li, L., Li, F. T., & Li, G. 2007. Cost-sensitive-data preprocessing for mining customer relationship management databases. IEEE Intelligent Systems, 221, 46-51.
[66]
Papadias, D., & Sellis, T. 1995. A pictorial query-by-example language. Journal of Visual Languages and Computing, 61, 53-72.
[67]
Pinto, F., Gago, P., & Santos, M. 2006. Data mining as a new paradigm for business intelligence in database marketing projects. In Proceedings of 8th International Conference on Enterprise Information Systems ICEIS 2006 pp. 144-149.
[68]
Prado, H. A., & Ferneda, E. 2008. Emerging technologies of text mining: Techniques and applications. Hershey, PA: IGI Global.
[69]
Quintela, H., Santos, M. F., & Cortez, P. 2007. Real-time intelligent decision support system for bridges structures behavior prediction. In J. Neves, M. Santos, & J. Machado Eds., LNAI: Vol. 4874, Proceedings of the 13th Portuguese Conference on Aritficial Intelligence, EPIA 2007 pp. 124-132. Berlin Heidelberg, Germany: Springer-Verlag.
[70]
Raisinghani, M. 2004. Business intelligence in the digital economy: Opportunities, limitations and risks. Hershey, PA: Idea Group Publishing.
[71]
Rantzau, R. 2004. Frequent itemset discovery with SQL using universal quantification. In R. Meo, P. Lanzi, & M. Klemettinen Eds., Lecture Notes on Artificial Intelligence: Vol. 2682. Database Support for Data Mining Applications - Discovering Knowledge with Inductive Queries pp. 194-213. Berlin, Heidelberg, Germany: Springer-Verlag.
[72]
Richardson, J., Schlegel, K., & Hostmann, B. 2009. Magic quadrant for business intelligence platforms. Core Research Note: G00163529, Gartner.
[73]
Richardson, J., Schlegel, K., Hostmann, B., & McMurchy, N. 2008. Magic quadrant for business intelligence platforms. Core Research Note: G00154227, Gartner.
[74]
Romei, A., Ruggieri, S., & Turini, F. 2006. KDDML: A middleware language and system for knowledge discovery in databases. Data & Knowledge Engineering, 572, 179-220.
[75]
Salzberg, S. L. 1999. Gene discovery in DNA sequences. IEEE Intelligent Systems, 146, 44-48.
[76]
Santos, M., Pereira, J., & Silva, ÁÁ. 2005. A cluster framework for data mining models: An application to intensive medicine. In Proceedings of 7th International Conference on Enterprise Information Systems ICEIS 2005, Miami, FL pp. 163-168.
[77]
Santos, M. F., & Azevedo, C. S. 2005. Data mining - Descoberta de Conhecimento em Bases de Dados. Lisboa, Portugal: FCA - Editora de Informática.
[78]
Santos, M. F., Cortez, P., Pereira, J., & Quintela, H. 2006. Corporate bankruptcy prediction using data mining techniques. In A. Zanasi, C. Brebbia, & N. Ebecken Eds., WIT Transactions on Information and Communication Tecchnologies: Vol. 37, Data Mining VII: Data, Text and Web Mining and their Business Applications pp. 349-357. Southampton, UK: WIT Press.
[79]
Santos, M. F., Cortez, P., Quintela, H., Neves, J., Vicente, H., & Arteiro, J. 2005. Ecological mining - A case study on dam water quality. In A. Zanasi, C. Brebbia, & N. Ebecken Eds., WIT Transactions on Information and Communication Tecchnologies Vol. 35. Data Mining VI: Data mining, Text Mining and their Business Applications pp. 481-489. Southampton, UK: WIT Press.
[80]
Santos, M. F., Cortez, P., Quintela, H., & Pinto, F. 2005. A clustering approach for knowledge discovery in database marketing. In A. Zanasi, C. Brebbia, & N. Ebecken Eds., WIT Transactions on Information and Communication Tecchnologies Vol. 35. Data Mining VI: Data, Text and Web Mining and their Business Applications pp. 367-376. Southampton, UK: WIT Press.
[81]
Sarawagi, S., Thomas, S., & Agrawal, R. 2000. Integrating association rule mining with relational database systems: Alternatives and implications. Data Mining and Knowledge Discovery, 42-3, 89-125.
[82]
Silva, M. S., Câmara, G., & Escada, M. 2009. Image mining: Detecting deforestation patterns through satellites. In Rahman, H. Ed., Data mining applications for empowering knowledge societies pp. 55-75. Hershey, PA: IGI Publishing.
[83]
Simoudis, E. 1996. Reality check for data mining. IEEE Expert, 115, 26-33.
[84]
Sweets, D. L., Pathak, Y., & Weng, J. 1998. An image database system with support for traditional alphanumeric queries and content-based queries by example. Multimedia Tools and Applications, 73, 181-212.
[85]
Tadesse, T., Wardlow, B., & Hayes, M. 2009. The application of data mining for drought monitoring and prediction. In Rahman, H. Ed., Data mining applications for empowering knowledge societies pp. 280-291. Hershey, PA: IGI Publishing.
[86]
Thierauf, R. J. 2001. Effective business intelligence systems. West Port, CP. Quorum Books.
[87]
Turban, E., Sharda, R., & Delen, D. 2011. Business intelligence: A managerial approach 9th ed. Upper Sadle River, NJ: Pearson Prentice Hall.
[88]
Vercellis, C. 2009. Business intelligence: Data mining and optimization for decision making. West Sussex, UK: John Wiley & Sons.
[89]
Witten, I. H., & Frank, E. 2005. Data mining - Practical machine learning tools and techniques. San Francisco, CA: Morgan Kaufmann Publishers.
[90]
Wu, C., Yu, L., & Jang, F. 2005. Using semantic dependencies to mine depressive symptoms from consultation records. IEEE Intelligent Systems, 206, 50-59.
[91]
Ye, N. 2003. The handbook of data mining. Mahwah, NJ: Lawrence Erlbaum Associates.
[92]
Zhang, X., Hu, X., Xia, J., Zhou, X., & Achananuparp, P. 2008. A graph-based biomedical literature clustering approach utilizing term's global and local importance information. International Journal of Data Warehousing and Mining, 44, 84-101.
[93]
Zloof, M. M. 1975. Query-by-example: The invocation and definition of tables and forms. In Proceedings of 1st International Conference on Very Large Databases VLDB '75, New York, NY pp. 1-24.
[94]
Zloof, M. M. 1977. Query-by-example: A data base language. IBM Systems Journal, 164, 324-343.
[95]
Zloof, M. M., & de Jong, S. 1977. The system for business automation SBA: Programming language. Communications of the ACM, 206, 385-396.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Decision Support System Technology
International Journal of Decision Support System Technology  Volume 5, Issue 4
October 2013
77 pages
ISSN:1941-6296
EISSN:1941-630X
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 01 October 2013

Author Tags

  1. Business Intelligence BI
  2. Clustering
  3. Data Mining DM
  4. Data Mining Language
  5. Inductive Database
  6. Query-By-Example QBE
  7. Query-Models-By-Example QMBE
  8. Relational Model

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media