Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A Multi-Objective Fuzzy Ant Colony Optimization Algorithm for Virtual Machine Placement

Published: 01 October 2016 Publication History

Abstract

In cloud computing, the most important challenge is to enforce proper utilization of physical resources. To accomplish the mentioned challenge, the cloud providers need to take care of optimal mapping of virtual machines to a set of physical machines. In this paper, the authors address the mapping problem as a multi-objective virtual machine placement problem VMP and propose to apply multi-objective fuzzy ant colony optimization F-ACO technique for optimal placing of virtual machines in the physical servers. VMP-F-ACO is a combination of fuzzy logic and ACO, where we use fuzzy transition probability rule to simulate the behaviour of the ants and the authors apply the same for virtual machine placement problem. The results of fuzzy ACO techniques are compared with five variants of classical ACO, three bin packing heuristics and two evolutionary algorithms. The results show that the fuzzy ACO techniques are better than the other optimization and heuristic techniques considered.

References

[1]
Adamuthe, A. C., Pandharpatte, R. M., & Thampi, G. T. 2013. Multi-objective Virtual Machine Placement in Cloud Environment. Proceedings of theInternational Conference on Cloud & Ubiquitous Computing & Emerging Technologies, pp. 8-13. IEEE. 10.1109/CUBE.2013.12
[2]
AgrawalS.BoseS. K.SundarrajanS. 2009, June. Grouping genetic algorithm for solving the serverconsolidation problem with conflicts. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation pp. 1-8. ACM.10.1145/1543834.1543836
[3]
Alsawy, A., & Hefny, H. 2010. Fuzzy-based ant colony optimization algorithm. Proceedings of the2nd International Conference on Computer Technology and Development. pp. 530-534. IEEE.
[4]
Anand, A., Lakshmi, J., & Nandy, S. K. 2013. Virtual Machine Placement Optimization Supporting Performance SLAs. Proceedings of the5th International Conference on Cloud Computing Technology and Science Vol. 1, pp. 298-305. IEEE. 10.1109/CloudCom.2013.46
[5]
Blum, C. & Dorigo, M. 2004, April. The Hyper-Cube Framework for Ant Colony Optimization. IEEE Transactions on Systems, Man and Cybernetics, PART B: Cybernetics, 342.
[6]
Branke, J., Deb, K., & Miettinen, K. 2008. Multiobjective Optimization: Interactive and Evolutionary Approaches. New York: Springer-Verlag.
[7]
Cardosa, M., Korupolu, M. R., & Singh, A. 2009. Shares and utilities based power consolidation in virtualized server environments. Proceedings of theIFIP/IEEE International Symposium onIntegrated Network Management pp. 327-334. IEEE. 10.1109/INM.2009.5188832
[8]
Chen, K. Y., Xu, Y., Xi, K., & Chao, H. J. 2013. Intelligent virtual machine placement for cost efficiency in geo-distributed cloud systems. Proceedings of theInternational Conference on Communications pp. 3498-3503. IEEE. 10.1109/ICC.2013.6655092
[9]
David, W., McNabb, A., & Seppi, K. 2011. Solving virtual machine packing with a reordering grouping genetic algorithm. Proceedings of theIEEE Congress on Evolutionary Computation CEC pp. 362-369. IEEE
[10]
Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.
[11]
Dong, D., & Herbert, J. 2013. Energy efficient VM placement supported by data analytic service. Proceedings of the13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing CCGrid pp. 648-655. IEEE. 10.1109/CCGrid.2013.94
[12]
Dong, J., Jin, X., Wang, H., Li, Y., Zhang, P., & Cheng, S. 2013. Energy-saving virtual machine placement in cloud data centers. Proceedings of theIEEE/ACM International Symposium on Cluster, Cloud and Grid Computing pp. 618-624. IEEE.
[13]
Dong, J., Wang, H., Jin, X., Li, Y., Zhang, P., & Cheng, S. 2013. Virtual Machine Placement for Improving Energy Efficiency and Network Performance in IaaS Cloud. Proceedings of the33rd International Conference on Distributed Computing Systems Workshops pp. 238-243. IEEE. 10.1109/ICDCSW.2013.48
[14]
Dorigo, M. 1992. Optimization, learning and natural algorithms {Ph.D. Thesis}. Politecnico di Milano, Italy.
[15]
Dorigo, M., & Gambardella, L. M. 1995. Ant-Q: A reinforcement learning approach to the traveling salesman problem. Proceedings of theTwelfth International Conference on Machine Learning pp. 252-260.
[16]
Dorigo, M., & Gambardella, L. M. 1997. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 11, 53-66.
[17]
Dorigo, M., & Gambardella, L. M. 1997. Ant colonies for the traveling salesman problem. Bio Systems, 432, 73-81. 9231906.
[18]
Dorigo, M., Maniezzo, V., & Colorni, A. 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 261, 29-41. 18263004.
[19]
Dorigo, M., Maniezzo, V., Colorni, A., & Maniezzo, V. 1991. Positive feedback as a search strategy.
[20]
Elloumia, W., Abraham, N. B. A., & Alimia, A. M. 2014. The multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization. Journal of Intelligent and Fuzzy Systems, 271, 515-525.
[21]
Eugen, F., Rilling, L., & Morin, C. 2011. Energy-aware ant colony based workload placement in clouds. Proceedings of theInternational Conference on Grid Computing pp. 26-33.
[22]
Falkenauer, E. 1996. A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 21, 5-30.
[23]
Fang, S., Kanagavelu, R., Lee, B. S., Foh, C. H., & Aung, K. M. M. 2013. Power-Efficient Virtual Machine Placement and Migration in Data Centers. In Green Computing and Communications GreenCom, International Conference on Internet of Things iThings/CPSCom pp. 1408-1413. IEEE. 10.1109/GreenCom-iThings-CPSCom.2013.246
[24]
Fang, W., Liang, X., Li, S., Chiaraviglio, L., & Xiong, N. 2013. VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers. Computer Networks, 571, 179-196.
[25]
Gacogne, L., & Sandri, S. 2008. A study on ant colony systems with fuzzy pheromone dispersion. Proceedings of IPMU pp. 812.
[26]
Gambardella, L. M., & Dorigo, M. 1996. Solving Symmetric and Asymmetric TSPs by Ant Colonies. Proceedings of theInternational conference on evolutionary computation pp. 622-627. 10.1109/ICEC.1996.542672
[27]
Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. 2013. A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. Journal of Computer and System Sciences, 798, 1230-1242.
[28]
GritL.IrwinD.YumerefendiA.ChaseJ. 2006. Virtual machine hosting for networked clusters: Building the foundations for autonomic orchestration.Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing pp.7. IEEE Computer Society.10.1109/VTDC.2006.17
[29]
Hong, H. J., Chen, D. Y., Huang, C. Y., Chen, K. T., & Hsu, C. H. 2013. QoE-aware virtual machine placement for cloud games. Proceedings of the12th Annual Workshop on Network and Systems Support for Games NetGames pp. 1-2. IEEE. 10.1109/NetGames.2013.6820610
[30]
Jiang, J. W., Lan, T., Ha, S., Chen, M., & Chiang, M. 2012. Joint VM placement and routing for data center traffic engineering. Proceedings of theInternational Conference on INFOCOM pp. 2876-2880. IEEE. 10.1109/INFCOM.2012.6195719
[31]
Jin, H., Pan, D., Xu, J., & Pissinou, N. 2012. Efficient VM placement with multiple deterministic and stochastic resources in data centers. Proceedings of theGlobal Communications Conference pp. 2505-2510. IEEE.
[32]
JosephC. T.KbC.CyriacaR. 2015. A Novel Family Genetic Approach for Virtual Machine Allocation. Proceedings of International Conference on Information and Communication Technologies. 10.1016/j.procs.2015.02.090
[33]
Kantarci, B., Foschini, L., Corradi, A., & Mouftah, H. T. 2012. Inter-and-intra data center VM-placement for energy-efficient large-scale cloud systems. In Globecom Workshops pp. 708-713. IEEE.
[34]
Liu, T., Lu, T., Wang, W., Wang, Q., Liu, Z., Gu, N., & Ding, X. 2012. SDMS-O: A service deployment management system for optimization in clouds while guaranteeing users QoS requirements. Future Generation Computer Systems, 287, 1100-1109.
[35]
Luke, S. 2013. Essentials of Metaheuristics 2nd ed. Lulu. Retrieved from http://cs.gmu.edu/~sean/book/metaheuristics/.
[36]
Maniezzo, V. 1999. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 114, 358-369.
[37]
Mell, P., & Grance, T. 2009. The NIST definition of cloud computing. National Institute of Standards and Technology, 536, 50.
[38]
Mills, K., Filliben, J., & Dabrowski, C. 2011. Comparing VM-Placement Algorithms for On-Demand Clouds. Proceedings of theThird IEEE International Conference on Cloud Computing Technology and Science. 10.1109/CloudCom.2011.22
[39]
Mishra, M., & Sahoo, A. 2011. On theory of vm placement: Anomalies in existing methodologies and their mitigation using a novel vector based approach. Proceedings of theInternational Conference on Cloud Computing pp. 275-282. IEEE. 10.1109/CLOUD.2011.38
[40]
Rozin, V., & Margaliot, M. 2006. The fuzzy ant. Proceedings of theInternational Conference on Fuzzy Systems pp. 1679-1686.
[41]
Rozin, V. & Margaliot, M. 2007. The Fuzzy Ant. IEEE Computational Intelligence Maganize.
[42]
Shigeta, S., Yamashima, H., Doi, T., Kawai, T., & Fukui, K. 2013. Design and Implementation of a Multi-objective Optimization Mechanism for Virtual Machine Placement in Cloud Computing Data Center. In Cloud Computing pp. 21-31. Springer International Publishing.
[43]
Stützle, T., & Hoos, H. 1996. Improving the Ant System: A detailed report on the MAX-MIN Ant System.
[44]
Stützle, T., & Hoos, H. H. 2000. MAX-MIN ant system. Future Generation Computer Systems, 168, 889-914.
[45]
Stützle, T. G. 1999. Local search algorithms for combinatorial problems: analysis, improvements, and new applications Vol. 220. Sankt Augustin, Germany: Infix.
[46]
Tang & Pan. S. 2015. A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. In Neural Processing Letters pp. 1-11
[47]
Tao, C. W., Taur, J. S., Jeng, J. T., & Wang, W. Y. 2009. A Novel Fuzzy Ant Colony System for Parameter Determination of Fuzzy Controllers. International Journal of Fuzzy Systems, 114, 298-307.
[48]
Tawfeek, M. A., El-Sisi, A. B., Keshk, A. E., & Torkey, F. A. 2014. Virtual Machine Placement Based on Ant Colony Optimization for Minimizing Resource Wastage . In Advanced Machine learning Technologies and application pp. 153-164. Springer International Publishing.
[49]
Van Ast, J., Babuška, R., & De Schutter, B. 2009. Fuzzy ant colony optimization for optimal control. Proceedings of theAmerican Control Conference. pp. 1003-1008. IEEE. 10.1109/ACC.2009.5160327
[50]
Voorsluys, W., Broberg, J., & Buyya, R. 2011. Introduction to cloud computing. In Cloud computing: Principles and paradigms pp.1-44.
[51]
Wang, S., Liu, Z., Zheng, Z., Sun, Q., & Yang, F. 2013. Particle Swarm Optimization for Energy-Aware Virtual Machine Placement Optimization in Virtualized Data Centers. Proceedings of theInternational Conference on Parallel and Distributed Systems ICPADS pp. 102-109. IEEE. 10.1109/ICPADS.2013.26
[52]
Wang, S. H., Huang, P. P. W., Wen, C. H. P., & Wang, L. C. 2014. EQVMP: Energy-efficient and QoS-aware virtual machine placement for software defined datacenter networks. Proceedings of theInternational Conference on Information Networking pp. 220-225. IEEE.
[53]
Wang, W., Chen, H., & Chen, X. 2012. An availability-aware virtual machine placement approach for dynamic scaling of cloud applications. Proceedings of the9th International Conference on Autonomic & Trusted Computing pp. 509-516. IEEE. 10.1109/UIC-ATC.2012.31
[54]
Wu, G., Tang, M., Tian, Y. C., & Li, W. 2012. Energy-efficient virtual machine placement in data centers by genetic algorithm. In Neural Information Processing pp. 315-323. Springer Berlin Heidelberg.
[55]
Wu, Y., Tang, M., & Fraser, W. 2012. A simulated annealing algorithm for energy efficient virtual machine placement. Proceedings of theIEEE International Conference on Systems, Man, and Cybernetics pp. 1245-1250 10.1109/ICSMC.2012.6377903

Cited By

View all
  • (2018)A two-step multi-objectivization method for improved evolutionary optimization of industrial problemsApplied Soft Computing10.1016/j.asoc.2017.12.02764:C(331-340)Online publication date: 1-Mar-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Fuzzy System Applications
International Journal of Fuzzy System Applications  Volume 5, Issue 4
October 2016
210 pages
ISSN:2156-177X
EISSN:2156-1761
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 01 October 2016

Author Tags

  1. Ant Colony Optimization
  2. Ant Q System
  3. Ant System
  4. Elitist Ant System
  5. Fuzzy Ant Colony Optimization
  6. Max-Min Ant System
  7. Virtual Machine Placement
  8. Virtualization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)A two-step multi-objectivization method for improved evolutionary optimization of industrial problemsApplied Soft Computing10.1016/j.asoc.2017.12.02764:C(331-340)Online publication date: 1-Mar-2018

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media