Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3310435.3310544acmotherconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

The Andoni-Krauthgamer-Razenshteyn characterization of sketchable norms fails for sketchable metrics

Published: 06 January 2019 Publication History

Abstract

Andoni, Krauthgamer and Razenshteyn (AKR) proved (STOC'15) that a finite-dimensional normed space (X, ||·||x) admits a O(1) sketching algorithm (namely, with O(1) sketch size and O(1) approximation) if and only if for every ε ∈ (0, 1) there exist α ⩾ 1 and an embedding f : Xl1−ε such that ||xy||x ⩽ ||f(x) − f(y)||1-εα||xy||x for all x, yX. The "if part" of this theorem follows from a sketching algorithm of Indyk (FOCS 2000). The contribution of AKR is therefore to demonstrate that the mere availability of a sketching algorithm implies the existence of the aforementioned geometric realization. Indyk's algorithm shows that the "if part" of the AKR characterization holds true for any metric space whatsoever, i.e., the existence of an embedding as above implies sketchability even when X is not a normed space. Due to this, a natural question that AKR posed was whether the assumption that the underlying space is a normed space is needed for their characterization of sketchability. We resolve this question by proving that for arbitrarily large n ∈ N there is an n-point metric space (M(n), dM(n)) which is O(1)-sketchable yet for every ε ϵ (0, [MATH HERE]), if α(n) ⩾ 1 and fn : M(n) → l1−ε are such that dM(n)(x,y)⩾||fn(x)- fn(y)||1-ε ⩾ α(n)dM(n) (x,y) for all x, y ε M(n), then necessarily limn→∞ α(n) = ∞.

References

[1]
I. Aharoni, B. Maurey, and B. S. Mityagin. Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces. Israel J. Math., 52(3):251--265, 1985.
[2]
N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. J. Comput. System Sci., 58(1, part 2):137--147, 1999. Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996).
[3]
A. Andoni, R. Krauthgamer, and I. Razenshteyn. Sketching and Embedding are Equivalent for Norms. SIAM J. Comput., 47(3):890--916, 2018.
[4]
S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. J. Amer. Math. Soc., 21(1):1--21, 2008.
[5]
P. Assouad. Plongements lipschitziens dans <b>R</b><sup>n</sup>. Bull. Soc. Math. France, 111(4):429--448, 1983.
[6]
Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2000.
[7]
J. Bourgain. On the distributions of the Fourier spectrum of Boolean functions. Israel J. Math., 131:269--276, 2002.
[8]
J. Bourgain and G. Kalai. Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal., 7(3):438--461, 1997.
[9]
J. Bretagnolle, D. Dacunha-Castelle, and J.-L. Krivine. Fonctions de type positif sur les espaces L<sup>p</sup>. C. R. Acad. Sci. Paris, 261:2153--2156, 1965.
[10]
M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften {Fundamental Principles of Mathematical Sciences}. Springer-Verlag, Berlin, 1999.
[11]
J. Cheeger and B. Kleiner. Realization of metric spaces as inverse limits, and bilipschitz embedding in L<sub>1</sub>. Geom. Funct. Anal., 23(1):96--133, 2013.
[12]
J. Cheeger, B. Kleiner, and A. Naor. Compression bounds for Lipschitz maps from the Heisenberg group to L<sub>1</sub>. Acta Math., 207(2):291--373, 2011.
[13]
G. David and S. Semmes. Fractured fractals and broken dreams, volume 7 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure.
[14]
N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Integrality gaps for sparsest cut and minimum linear arrangement problems. In STOC'06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 537--546. ACM, New York, 2006.
[15]
M. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997.
[16]
J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
[17]
P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM, 53(3):307--323, 2006.
[18]
P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In STOC '98 (Dallas, TX), pages 604--613. ACM, New York, 1999.
[19]
J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions (extended abstract). In 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24--26 October 1988, pages 68--80. IEEE Computer Society, 1988.
[20]
N. J. Kalton. Banach spaces embedding into L<sub>0</sub>. Israel J. Math., 52(4):305--319, 1985.
[21]
N. J. Kalton, N. T. Peck, and J. W. Roberts. An F-space sampler, volume 89 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1984.
[22]
D. Kane and R. Meka. A PRG for Lipschitz functions of polynomials with applications to sparsest cut. In STOC'13---Proceedings of the 2013 ACM Symposium on Theory of Computing, pages 1--10. ACM, New York, 2013.
[23]
S. Khot and A. Naor. Nonembeddability theorems via Fourier analysis. Math. Ann., 334(4):821--852, 2006.
[24]
S. A. Khot and N. K. Vishnoi. The unique games conjecture, integrability gap for cut problems and embeddability of negative-type metrics into l<sub>1</sub>. J. ACM, 62(1):Art. 8, 39, 2015.
[25]
G. Kindler, N. Kirshner, and R. O'Donnell. Gaussian noise sensitivity and Fourier tails. Israel J. Math., 225(1):71--109, 2018.
[26]
R. Krauthgamer and Y. Rabani. Improved lower bounds for embeddings into L<sub>1</sub>. SIAM J. Comput., 38(6):2487--2498, 2009.
[27]
E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457--474, 2000.
[28]
S. Kwapień. Unsolved Problems. Studia Math., 38:467--483, 1970. Problem 3, page 469.
[29]
J. R. Lee and A. Naor. L<sub>p</sub> metrics on the Heisenberg group and the Goemans-Linial conjecture. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21--24 October 2006, Berkeley, California, USA, Proceedings, pages 99--108. IEEE Computer Society, 2006.
[30]
J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. I. Springer-Verlag, Berlin-New York, 1977. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92.
[31]
J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. II, volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete {Results in Mathematics and Related Areas}. Springer-Verlag, Berlin-New York, 1979. Function spaces.
[32]
M. Mendel and A. Naor. Euclidean quotients of finite metric spaces. Adv. Math., 189(2):451--494, 2004.
[33]
A. Naor. L<sub>1</sub> embeddings of the Heisenberg group and fast estimation of graph isoperimetry. In Proceedings of the International Congress of Mathematicians. Volume III, pages 1549--1575. Hindustan Book Agency, New Delhi, 2010.
[34]
A. Naor, Y. Rabani, and A. Sinclair. Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs. J. Funct. Anal., 227(2):273--303, 2005.
[35]
A. Naor and R. Young. Vertical perimeter versus horizontal perimeter. Ann. of Math. (2), 188(1):171--279, 2018.
[36]
E. M. Nikišin. A resonance theorem and series in eigenfunctions of the Laplace operator. Izv. Akad. Nauk SSSR Ser. Mat., 36:795--813, 1972.
[37]
R. O'Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.
[38]
M. Saks and X. Sun. Space lower bounds for distance approximation in the data stream model. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 360--369. ACM, New York, 2002.
[39]
J. H. Wells and L. R. Williams. Embeddings and extensions in analysis. Springer-Verlag, New York-Heidelberg, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84.
  1. The Andoni-Krauthgamer-Razenshteyn characterization of sketchable norms fails for sketchable metrics

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      SODA '19: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
      January 2019
      2993 pages

      Sponsors

      • SIAM Activity Group on Discrete Mathematics

      In-Cooperation

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 06 January 2019

      Check for updates

      Qualifiers

      • Research-article

      Conference

      SODA '19
      Sponsor:
      SODA '19: Symposium on Discrete Algorithms
      January 6 - 9, 2019
      California, San Diego

      Acceptance Rates

      Overall Acceptance Rate 411 of 1,322 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 41
        Total Downloads
      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 17 Nov 2024

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media