• Zhou J, Liang T, Zhang D, Liu S, Wang J and Wu E. (2025). WaterHE-NeRF: Water-ray matching neural radiance fields for underwater scene reconstruction. Information Fusion. 10.1016/j.inffus.2024.102770. 115. (102770). Online publication date: 1-Mar-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S1566253524005487

  • Yu Q, Hou G, Zhang W, Huang B and Pan Z. (2025). Contour and texture preservation underwater image restoration via low-rank regularizations. Expert Systems with Applications. 10.1016/j.eswa.2024.125549. 262. (125549). Online publication date: 1-Mar-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417424024163

  • Subramani B and Veluchamy M. (2025). Pixel intensity optimization and detail-preserving contextual contrast enhancement for underwater images. Optics & Laser Technology. 10.1016/j.optlastec.2024.111464. 180. (111464). Online publication date: 1-Jan-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S0030399224009228

  • Wu M and Zhong Q. (2024). Image enhancement algorithm combining histogram equalization and bilateral filtering. Systems and Soft Computing. 10.1016/j.sasc.2024.200169. 6. (200169). Online publication date: 1-Dec-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S277294192400098X

  • Zhou C, Jiang Y, Liu H, Cao J and Gu K. (2024). Subjective and objective quality evaluation for industrial images. Displays. 10.1016/j.displa.2024.102858. 85. (102858). Online publication date: 1-Dec-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0141938224002221

  • Hsu W and Hsu Y. (2024). Multi-Scale and Multi-Layer Lattice Transformer for Underwater Image Enhancement. ACM Transactions on Multimedia Computing, Communications, and Applications. 20:11. (1-24). Online publication date: 30-Nov-2024.

    https://doi.org/10.1145/3688802

  • Du B, Xu H and Chen Q. (2024). No-reference underwater image quality assessment based on Multi-Scale and mutual information analysis. Displays. 10.1016/j.displa.2024.102900. (102900). Online publication date: 1-Nov-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0141938224002646

  • Jayanetti H. Evaluating Social Media Reach via Mainstream Media Discourse. Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. (5455-5458).

    https://doi.org/10.1145/3627673.3680260

  • Sun W, Hou S, Wu G, Zhang J, Zhang Y and Jiang H. (2024). Turbid image tackling framework towards underwater concrete bridge detection based on distance control and deep learning. Advanced Engineering Informatics. 10.1016/j.aei.2024.102723. 62. (102723). Online publication date: 1-Oct-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S1474034624003719

  • Sauder J and Tuia D. Self-Supervised Underwater Caustics Removal and Descattering via Deep Monocular SLAM. Computer Vision – ECCV 2024. (214-232).

    https://doi.org/10.1007/978-3-031-72907-2_13

  • Ji X, Wang X, Leng N, Hao L and Guo H. (2024). Dual-branch underwater image enhancement network via multiscale neighborhood interaction attention learning. Image and Vision Computing. 10.1016/j.imavis.2024.105256. (105256). Online publication date: 1-Sep-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0262885624003615

  • Li Y, Mi Z, Lin P and Fu X. (2024). Underwater image enhancement via brightness mask-guided multi-attention embedding. Signal Processing: Image Communication. 10.1016/j.image.2024.117200. (117200). Online publication date: 1-Sep-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0923596524001012

  • Lin Z, He Z, Jin C, Luo T and Chen Y. (2024). Joint Luminance-Saliency Prior and Attention for Underwater Image Quality Assessment. Remote Sensing. 10.3390/rs16163021. 16:16. (3021).

    https://www.mdpi.com/2072-4292/16/16/3021

  • Chen B, Su J, Chen G and Gan M. (2024). FISTA acceleration inspired network design for underwater image enhancement. Journal of Visual Communication and Image Representation. 10.1016/j.jvcir.2024.104224. 103. (104224). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S1047320324001809

  • Hou G, Zhang S, Lu T, Li Y, Pan Z and Huang B. (2024). No-reference quality assessment for underwater images. Computers and Electrical Engineering. 10.1016/j.compeleceng.2024.109293. 118. (109293). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0045790624002210

  • Yang K and Du W. (2024). A Low-Density Parity-Check Coding Scheme for LoRa Networking. ACM Transactions on Sensor Networks. 20:4. (1-29). Online publication date: 31-Jul-2024.

    https://doi.org/10.1145/3665928

  • Zhang Y, Chandler D and Leszczuk M. (2024). Retinex-based underwater image enhancement via adaptive color correction and hierarchical U-shape transformer. Optics Express. 10.1364/OE.523951. 32:14. (24018). Online publication date: 1-Jul-2024.

    https://opg.optica.org/abstract.cfm?URI=oe-32-14-24018

  • Chen C, Li Z, Zhong Z, Wang X and Shao F. (2024). Hierarchical prior-guided quality assessment method for underwater images. Displays. 10.1016/j.displa.2024.102729. 83. (102729). Online publication date: 1-Jul-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0141938224000933

  • Gadre A, Machester Z and Kumar S. (2024). Adapting LoRa Ground Stations for Low-latency Imaging and Inference from LoRa-enabled CubeSats. ACM Transactions on Sensor Networks. 0:0.

    https://doi.org/10.1145/3675170

  • Shahid M and Krishnaswamy B. (2024). BYOG : Multi-Channel, Real-time LoRaWAN Gateway Testbed using General-purpose Software Defined Radio. Proceedings of the ACM on Networking. 2:CoNEXT2. (1-17). Online publication date: 13-Jun-2024.

    https://doi.org/10.1145/3656299

  • Yang K, Chen Y and Du W. OrchLoc: In-Orchard Localization via a Single LoRa Gateway and Generative Diffusion Model-based Fingerprinting. Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services. (304-317).

    https://doi.org/10.1145/3643832.3661876

  • Li K, Fan H, Qi Q, Yan C, Sun K and Wu Q. (2023). TCTL-Net: Template-Free Color Transfer Learning for Self-Attention Driven Underwater Image Enhancement. IEEE Transactions on Circuits and Systems for Video Technology. 34:6. (4682-4697). Online publication date: 1-Jun-2024.

    https://doi.org/10.1109/TCSVT.2023.3328272

  • Gong Z, An Z, Dai D, Tong J, Long S and Yang L. Enabling Cross-Medium Wireless Networks with Miniature Mechanical Antennas. Proceedings of the 30th Annual International Conference on Mobile Computing and Networking. (648-662).

    https://doi.org/10.1145/3636534.3649387

  • Zhang D, Guo Y, Zhou J, Zhang W, Lin Z, Polat K, Alenezi F and Alhudhaif A. (2024). TANet. Expert Systems with Applications: An International Journal. 242:C. Online publication date: 15-May-2024.

    https://doi.org/10.1016/j.eswa.2023.122693

  • ElTobgui R, Zayer F, Iacoponi S, De Masi G, Renda F and Dias J. (2024). Towards Efficient Underwater Robotic Swarms: Edge-Based Comparative Analysis of Multi-Object Trackers OCEANS 2024 - SINGAPORE. 10.1109/OCEANS51537.2024.10682269. 979-8-3503-6207-7. (1-7).

    https://ieeexplore.ieee.org/document/10682269/

  • Zhang Z, Liu Y, Zhu X, Li F and Song B. (2023). DSE-FCOS: dilated and SE block-reinforced FCOS for detection of marine benthos. The Visual Computer: International Journal of Computer Graphics. 40:4. (2679-2693). Online publication date: 1-Apr-2024.

    https://doi.org/10.1007/s00371-023-02971-2

  • Li X, Xu H, Jiang G, Yu M, Luo T, Zhang X and Ying H. (2023). Underwater Image Quality Assessment from Synthetic to Real-world: Dataset and Objective Method. ACM Transactions on Multimedia Computing, Communications, and Applications. 20:3. (1-23). Online publication date: 31-Mar-2024.

    https://doi.org/10.1145/3624983

  • Dai C and Lin M. (2024). Adaptive contrast enhancement for underwater image using imaging model guided variational framework. Multimedia Tools and Applications. 10.1007/s11042-024-18686-y. 83:35. (83311-83338).

    https://link.springer.com/10.1007/s11042-024-18686-y

  • Hu S, Cheng Z, Fan G, Gan M and Chen C. (2024). Texture-aware and color-consistent learning for underwater image enhancement. Journal of Visual Communication and Image Representation. 10.1016/j.jvcir.2024.104051. 98. (104051). Online publication date: 1-Feb-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S1047320324000063

  • Wu W, Huang D, Yao Y, Shen Z, Zhang H, Yan C and Zheng B. (2024). Feature rectification and enhancement for no-reference image quality assessment. Journal of Visual Communication and Image Representation. 98:C. Online publication date: 1-Feb-2024.

    https://doi.org/10.1016/j.jvcir.2023.104030

  • Ni Z, Liu Y, Ding K, Yang W, Wang H and Wang S. (2024). Opinion-Unaware Blind Image Quality Assessment Using Multi-Scale Deep Feature Statistics. IEEE Transactions on Multimedia. 26. (10211-10224). Online publication date: 1-Jan-2024.

    https://doi.org/10.1109/TMM.2024.3405729

  • Yao Z, Su J, Fan G, Gan M and Chen C. GACA: A Gradient-Aware and Contrastive-Adaptive Learning Framework for Low-Light Image Enhancement. IEEE Transactions on Instrumentation and Measurement. 10.1109/TIM.2024.3353285. 73. (1-14).

    https://ieeexplore.ieee.org/document/10398262/

  • Li X, Xu H, Jiang G, Yu M, Chen Y, Luo T and Ying H. Underwater Image Quality Assessment Based on Multiscale and Antagonistic Energy. IEEE Transactions on Instrumentation and Measurement. 10.1109/TIM.2023.3338657. 73. (1-14).

    https://ieeexplore.ieee.org/document/10339343/

  • Li K, Wang X, Liu W, Qi Q, Hou G, Zhang Z and Sun K. Learning Scribbles for Dense Depth: Weakly Supervised Single Underwater Image Depth Estimation Boosted by Multitask Learning. IEEE Transactions on Geoscience and Remote Sensing. 10.1109/TGRS.2024.3358892. 62. (1-15).

    https://ieeexplore.ieee.org/document/10415086/

  • Zhu P, Liu Y, Xu M, Fu X, Wang N and Liu S. Unsupervised Multiple Representation Disentanglement Framework for Improved Underwater Visual Perception. IEEE Journal of Oceanic Engineering. 10.1109/JOE.2023.3317903. 49:1. (48-65).

    https://ieeexplore.ieee.org/document/10275315/

  • Dai C and Lin M. Single Underwater Image Restoration Using Variational Framework Guided by Imaging Model With Noise. IEEE Access. 10.1109/ACCESS.2024.3400533. 12. (82427-82442).

    https://ieeexplore.ieee.org/document/10529991/

  • Zhang D, Wu C, Zhou J, Zhang W, Lin Z, Polat K and Alenezi F. (2024). Robust underwater image enhancement with cascaded multi-level sub-networks and triple attention mechanism. Neural Networks. 10.1016/j.neunet.2023.11.008. 169. (685-697). Online publication date: 1-Jan-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0893608023006317

  • Yi X, Jiang Q and Zhou W. (2024). No-reference quality assessment of underwater image enhancement. Displays. 10.1016/j.displa.2023.102586. 81. (102586). Online publication date: 1-Jan-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0141938223002202

  • Vidhi and Rohilla R. (2023). Assessment of Different Approaches used for Image Enhancement in Underwater Scenarios 2023 9th International Conference on Signal Processing and Communication (ICSC). 10.1109/ICSC60394.2023.10441538. 979-8-3503-8320-1. (232-237).

    https://ieeexplore.ieee.org/document/10441538/

  • Liu F, Huang Z, Xie T, Hu R and Qi B. (2023). Enhancing Underwater Image Quality Assessment with Influential Perceptual Features. Electronics. 10.3390/electronics12234760. 12:23. (4760).

    https://www.mdpi.com/2079-9292/12/23/4760

  • Vidhi and Rohilla R. (2023). Empirical Analysis of Different Existing Methods for Image Enhancement in Underwater Scenarios 2023 Seventh International Conference on Image Information Processing (ICIIP). 10.1109/ICIIP61524.2023.10537724. 979-8-3503-7140-6. (177-182).

    https://ieeexplore.ieee.org/document/10537724/

  • Zhang D, He Z, Zhang X, Wang Z, Ge W, Shi T and Lin Y. (2023). Underwater image enhancement via multi-scale fusion and adaptive color-gamma correction in low-light conditions. Engineering Applications of Artificial Intelligence. 10.1016/j.engappai.2023.106972. 126. (106972). Online publication date: 1-Nov-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0952197623011569

  • Sonawane J, Patil M and Birajdar G. (2023). Adaptive rule-based colour component weight assignment strategy for underwater video enhancement. The Imaging Science Journal. 10.1080/13682199.2023.2239012. (1-22).

    https://www.tandfonline.com/doi/full/10.1080/13682199.2023.2239012

  • Yang X, Li J, Liang W, Wang D, Zhao J and Xia X. (2023). Underwater image quality assessment. Journal of the Optical Society of America A. 10.1364/JOSAA.485307. 40:7. (1276). Online publication date: 1-Jul-2023.

    https://opg.optica.org/abstract.cfm?URI=josaa-40-7-1276

  • Hao Y, Hou G, Tan L, Wang Y, Zhu H and Pan Z. (2023). Texture enhanced underwater image restoration via Laplacian regularization. Applied Mathematical Modelling. 10.1016/j.apm.2023.02.004. 119. (68-84). Online publication date: 1-Jul-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0307904X23000495

  • Zhang D, Cao W, Zhou J, Peng Y, Zhang W and Lin Z. (2023). Two-Branch Underwater Image Enhancement and Original Resolution Information Optimization Strategy in Ocean Observation. Journal of Marine Science and Engineering. 10.3390/jmse11071285. 11:7. (1285).

    https://www.mdpi.com/2077-1312/11/7/1285

  • Game C, Thompson M and Finlayson G. (2023). Weibull Tone Mapping (WTM) for the Enhancement of Underwater Imagery. Sensors. 10.3390/s23073533. 23:7. (3533).

    https://www.mdpi.com/1424-8220/23/7/3533

  • Saleem A, Paheding S, Rawashdeh N, Awad A and Kaur N. A Non-Reference Evaluation of Underwater Image Enhancement Methods Using a New Underwater Image Dataset. IEEE Access. 10.1109/ACCESS.2023.3240648. 11. (10412-10428).

    https://ieeexplore.ieee.org/document/10028983/