• Deepak A and Ghanekar U. (2024). Next-gen image enhancement: CapsNet-driven auto-encoder model in single image super resolution. Multimedia Tools and Applications. 10.1007/s11042-024-18798-5.

    https://link.springer.com/10.1007/s11042-024-18798-5

  • Li G, Zhou Z and Wang G. (2024). A joint image super‐resolution network for multiple degradations removal via complementary transformer and convolutional neural network. IET Image Processing. 10.1049/ipr2.13030. 18:5. (1344-1357). Online publication date: 1-Apr-2024.

    https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ipr2.13030

  • Zhang H, Liu Y, Jung C, Liu Y and Li M. RTNN: A Neural Network-Based In-Loop Filter in VVC Using Resblock and Transformer. IEEE Access. 10.1109/ACCESS.2024.3431527. 12. (104599-104610).

    https://ieeexplore.ieee.org/document/10605812/

  • Liu Y, Dong H, Liang B, Liu S, Dong Q, Chen K, Chen F, Fu L and Wang F. Unfolding Once is Enough: A Deployment-Friendly Transformer Unit for Super-Resolution. Proceedings of the 31st ACM International Conference on Multimedia. (7952-7960).

    https://doi.org/10.1145/3581783.3612128

  • Wang Y, Guo J, Zhang J, Guo S, Zhang W and Zheng Q. (2023). Towards Fairer and More Efficient Federated Learning via Multidimensional Personalized Edge Models 2023 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN54540.2023.10191956. 978-1-6654-8867-9. (1-8).

    https://ieeexplore.ieee.org/document/10191956/

  • Zhou W and Wang Z. Quality Assessment of Image Super-Resolution: Balancing Deterministic and Statistical Fidelity. Proceedings of the 30th ACM International Conference on Multimedia. (934-942).

    https://doi.org/10.1145/3503161.3547899

  • Duan C and Xiao N. (2021). Parallax‐based second‐order mixed attention for stereo image super‐resolution. IET Computer Vision. 10.1049/cvi2.12063. 16:1. (26-37). Online publication date: 1-Feb-2022.

    https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12063

  • Chen C, Qing C, Xu X and Dickinson P. Cross Parallax Attention Network for Stereo Image Super-Resolution. IEEE Transactions on Multimedia. 10.1109/TMM.2021.3050092. 24. (202-216).

    https://ieeexplore.ieee.org/document/9318556/

  • Huang B, Guo Z, Wu L, He B, Li X and Lin Y. (2021). Pyramid Information Distillation Attention Network for Super-Resolution Reconstruction of Remote Sensing Images. Remote Sensing. 10.3390/rs13245143. 13:24. (5143).

    https://www.mdpi.com/2072-4292/13/24/5143

  • Wen Y, Wang J, Li Z, Sheng B, Li P, Chi X and Mao L. (2021). Progressive Multi-scale Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Gate Fusion Network. Advances in Computer Graphics. 10.1007/978-3-030-89029-2_5. (67-79).

    https://link.springer.com/10.1007/978-3-030-89029-2_5

  • Sundaram D and Loganathan A. (2020). A New Supervised Clustering Framework Using Multi Discriminative Parts and Expectation–Maximization Approach for a Fine-Grained Animal Breed Classification (SC-MPEM). Neural Processing Letters. 10.1007/s11063-020-10246-3. 52:1. (727-766). Online publication date: 1-Aug-2020.

    https://link.springer.com/10.1007/s11063-020-10246-3