• Boddu N, Jain R and Lin H. (2023). On relating one-way classical and quantum communication complexities. Quantum. 10.22331/q-2023-05-22-1010. 7. (1010).

    https://quantum-journal.org/papers/q-2023-05-22-1010/

  • Jain R and Kundu S. A direct product theorem for one-way quantum communication. Proceedings of the 36th Computational Complexity Conference.

    https://doi.org/10.4230/LIPIcs.CCC.2021.27

  • Jain R. (2021). Chain-Rules for Channel Capacity 2021 IEEE International Symposium on Information Theory (ISIT). 10.1109/ISIT45174.2021.9518181. 978-1-5386-8209-8. (262-267).

    https://ieeexplore.ieee.org/document/9518181/

  • Göös M and Watson T. (2020). A Lower Bound for Sampling Disjoint Sets. ACM Transactions on Computation Theory. 12:3. (1-13). Online publication date: 23-Jul-2020.

    https://doi.org/10.1145/3404858

  • Chattopadhyay A, Koucký M, Loff B and Mukhopadhyay S. (2019). Simulation Theorems via Pseudo-random Properties. computational complexity. 10.1007/s00037-019-00190-7.

    http://link.springer.com/10.1007/s00037-019-00190-7

  • Jain R, Pereszlényi A and Yao P. (2016). A Direct Product Theorem for Two-Party Bounded-Round Public-Coin Communication Complexity. Algorithmica. 76:3. (720-748). Online publication date: 1-Nov-2016.

    https://doi.org/10.1007/s00453-015-0100-0

  • Jain R. (2015). New Strong Direct Product Results in Communication Complexity. Journal of the ACM. 62:3. (1-27). Online publication date: 30-Jun-2015.

    https://doi.org/10.1145/2699432

  • Sherstov A. (2014). Communication Lower Bounds Using Directional Derivatives. Journal of the ACM. 61:6. (1-71). Online publication date: 17-Dec-2014.

    https://doi.org/10.1145/2629334

  • Sherstov A. (2014). Communication Complexity Theory: Thirty-Five Years of Set Disjointness. Mathematical Foundations of Computer Science 2014. 10.1007/978-3-662-44522-8_3. (24-43).

    https://link.springer.com/10.1007/978-3-662-44522-8_3

  • Saglam M and Tardos G. On the Communication Complexity of Sparse Set Disjointness and Exists-Equal Problems. Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. (678-687).

    https://doi.org/10.1109/FOCS.2013.78

  • Sherstov A. Communication lower bounds using directional derivatives. Proceedings of the forty-fifth annual ACM symposium on Theory of Computing. (921-930).

    https://doi.org/10.1145/2488608.2488725

  • Jain R, Pereszlenyi A and Yao P. A Direct Product Theorem for the Two-Party Bounded-Round Public-Coin Communication Complexity. Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. (167-176).

    https://doi.org/10.1109/FOCS.2012.42

  • Laplante S, Lerays V and Roland J. Classical and quantum partition bound and detector inefficiency. Proceedings of the 39th international colloquium conference on Automata, Languages, and Programming - Volume Part I. (617-628).

    https://doi.org/10.1007/978-3-642-31594-7_52

  • Jain R and Nayak A. (2012). Short Proofs of the Quantum Substate Theorem. IEEE Transactions on Information Theory. 58:6. (3664-3669). Online publication date: 1-Jun-2012.

    https://doi.org/10.1109/TIT.2012.2184522

  • Sherstov A. The multiparty communication complexity of set disjointness. Proceedings of the forty-fourth annual ACM symposium on Theory of computing. (525-548).

    https://doi.org/10.1145/2213977.2214026

  • Zhang S. On the power of lower bound methods for one-way quantum communication complexity. Proceedings of the 38th international colloquim conference on Automata, languages and programming - Volume Part I. (49-60).

    /doi/10.5555/2027127.2027134

  • Klauck H. On Arthur Merlin Games in Communication Complexity. Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity. (189-199).

    https://doi.org/10.1109/CCC.2011.33

  • Sherstov A. Strong direct product theorems for quantum communication and query complexity. Proceedings of the forty-third annual ACM symposium on Theory of computing. (41-50).

    https://doi.org/10.1145/1993636.1993643

  • Zhang S. (2011). On the Power of Lower Bound Methods for One-Way Quantum Communication Complexity. Automata, Languages and Programming. 10.1007/978-3-642-22006-7_5. (49-60).

    http://link.springer.com/10.1007/978-3-642-22006-7_5

  • Klauck H. A strong direct product theorem for disjointness. Proceedings of the forty-second ACM symposium on Theory of computing. (77-86).

    https://doi.org/10.1145/1806689.1806702

  • Beame P and Huynh-Ngoc D. (2009). Multiparty Communication Complexity and Threshold Circuit Size of AC^0 2009 IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS). 10.1109/FOCS.2009.12. 978-1-4244-5116-6. (53-62).

    http://ieeexplore.ieee.org/document/5438647/

  • Jain R, Radhakrishnan J and Sen P. (2009). A property of quantum relative entropy with an application to privacy in quantum communication. Journal of the ACM. 56:6. (1-32). Online publication date: 1-Sep-2009.

    https://doi.org/10.1145/1568318.1568323

  • Jain R and Klauck H. New Results in the Simultaneous Message Passing Model via Information Theoretic Techniques. Proceedings of the 2009 24th Annual IEEE Conference on Computational Complexity. (369-378).

    https://doi.org/10.1109/CCC.2009.28

  • Jain R and Zhang S. (2009). New bounds on classical and quantum one-way communication complexity. Theoretical Computer Science. 410:26. (2463-2477). Online publication date: 1-Jun-2009.

    https://doi.org/10.1016/j.tcs.2008.10.014

  • Kaplan M and Laplante S. Kolmogorov Complexity and Combinatorial Methods in Communication Complexity. Proceedings of the 6th Annual Conference on Theory and Applications of Models of Computation. (261-270).

    https://doi.org/10.1007/978-3-642-02017-9_29

  • Ben-Aroya A, Regev O and Wolf R. A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs. Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science. (477-486).

    https://doi.org/10.1109/FOCS.2008.45

  • Gavinsky D. Classical interaction cannot replace a quantum message. Proceedings of the fortieth annual ACM symposium on Theory of computing. (95-102).

    https://doi.org/10.1145/1374376.1374393