Abstract
We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that neither of the detectors fails.
When the players share a quantum state, this leads to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.
Full version available as arXiv:1203.4155 and ECCC TR12-023.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, R., Klauck, H.: The partition bound for classical complexity and query complexity. In: Proc. 25th CCC 2010, pp. 247–258 (2010)
Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication games. In: Proc. 28th STOC 1996, pp. 561–570 (1996)
Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)
Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and classical one-way communication complexity. SIAM J. Comput. 38(1), 366–384 (2008)
Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separation for one-way quantum communication complexity, with applications to cryptography. SIAM J. Comput. 38(5), 1695–1708 (2008)
Klartag, B., Regev, O.: Quantum one-way communication can be exponentially stronger than classical communication. In: Proc. 43rd STOC 2011, pp. 31–40 (2011)
Yao, A.C.: Lower bounds by probabilistic arguments. In: Proc. 24th FOCS 1983, pp. 420–428 (1983)
de Graaf, M., de Wolf, R.: On Quantum Versions of the Yao Principle. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 347–358. Springer, Heidelberg (2002)
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signaling distributions. Quantum Information and Computation 11(7-8), 649–676 (2011)
Massar, S.: Non locality, closing the detection loophole and communication complexity. Phys. Rev. A 65, 032121 (2002)
Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Combinatorics and quantum nonlocality. Phys. Rev. Lett. 91, 048301 (2003)
Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science 3(4), 263–399 (2009)
Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Structures and Algorithms 34(3), 368–394 (2009)
Gisin, B., Gisin, N.: A local hidden variable model of quantum correlation exploiting the detection loophole. Phys. Lett. A 260, 323–327 (1999)
Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs classical communication and computation. In: Proc. 30th STOC 1998, pp. 63–68 (1998)
Brassard, G., Cleve, R., Tapp, A.: Cost of exactly simulating quantum entanglement with classical communication. Phys. Rev. Lett. 83, 1874–1877 (1999)
Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Multipartite nonlocal quantum correlations resistant to imperfections. Phys. Rev. A 73, 012321 (2006)
Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proc. 26th CCC 2011, pp. 157–166 (2011)
Lovász, L.: Communication Complexity: a Survey. In: Paths, Flows, and VLSI Layout, B.H. Korte edition. Springer (1990)
Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication complexity. SIAM J. Discrete Math. 8(1), 76–92 (1995)
Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. In: Proc. 26th FOCS 1985, pp. 429–442 (1985)
Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols and logspace-hard pseudorandom sequences. In: Proc. 21st STOC 1989, pp. 1–11 (1989)
Newman, I.: Private vs. common random bits in communication complexity. Information Processing Letters 39(2), 61–71 (1991)
Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l 1. In: Proc. 46th FOCS 2005, pp. 53–62 (2005)
Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Computing 1, 47–79 (2005)
Høyer, P., de Wolf, R.: Improved Quantum Communication Complexity Bounds for Disjointness and Equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 299–310. Springer, Heidelberg (2002)
Jain, R., Klauck, H., Nayak, A.: Direct product theorems for communication complexity via subdistribution bounds. In: Proc. 40th STOC 2008, pp. 599–608 (2008)
Brunner, N., Pironio, S., Acín, A., Gisin, N., Méthot, A., Scarani, V.: Testing the dimension of Hilbert spaces. Phys. Rev. Lett. 100, 210503 (2008)
Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)
Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proc. 42nd FOCS 2001, pp. 270–278 (2001)
Braverman, M., Weinstein, O.: A discrepancy lower bound for information complexity. Technical Report 12-164, ECCC (2011)
Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on information complexity via zero-communication protocols and applications. Technical Report 12-038, ECCC (2012)
Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics 10(7), 073013 (2008)
Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Proc. 23rd CCC 2008, pp. 199–210 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laplante, S., Lerays, V., Roland, J. (2012). Classical and Quantum Partition Bound and Detector Inefficiency. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-31594-7_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31593-0
Online ISBN: 978-3-642-31594-7
eBook Packages: Computer ScienceComputer Science (R0)