Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classical and Quantum Partition Bound and Detector Inefficiency

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that neither of the detectors fails.

When the players share a quantum state, this leads to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.

Full version available as arXiv:1203.4155 and ECCC TR12-023.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, R., Klauck, H.: The partition bound for classical complexity and query complexity. In: Proc. 25th CCC 2010, pp. 247–258 (2010)

    Google Scholar 

  2. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication games. In: Proc. 28th STOC 1996, pp. 561–570 (1996)

    Google Scholar 

  3. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  Google Scholar 

  4. Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and classical one-way communication complexity. SIAM J. Comput. 38(1), 366–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separation for one-way quantum communication complexity, with applications to cryptography. SIAM J. Comput. 38(5), 1695–1708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Klartag, B., Regev, O.: Quantum one-way communication can be exponentially stronger than classical communication. In: Proc. 43rd STOC 2011, pp. 31–40 (2011)

    Google Scholar 

  7. Yao, A.C.: Lower bounds by probabilistic arguments. In: Proc. 24th FOCS 1983, pp. 420–428 (1983)

    Google Scholar 

  8. de Graaf, M., de Wolf, R.: On Quantum Versions of the Yao Principle. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 347–358. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  10. Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signaling distributions. Quantum Information and Computation 11(7-8), 649–676 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Massar, S.: Non locality, closing the detection loophole and communication complexity. Phys. Rev. A 65, 032121 (2002)

    Google Scholar 

  12. Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Combinatorics and quantum nonlocality. Phys. Rev. Lett. 91, 048301 (2003)

    Google Scholar 

  13. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science 3(4), 263–399 (2009)

    Article  MathSciNet  Google Scholar 

  14. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Structures and Algorithms 34(3), 368–394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gisin, B., Gisin, N.: A local hidden variable model of quantum correlation exploiting the detection loophole. Phys. Lett. A 260, 323–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs classical communication and computation. In: Proc. 30th STOC 1998, pp. 63–68 (1998)

    Google Scholar 

  17. Brassard, G., Cleve, R., Tapp, A.: Cost of exactly simulating quantum entanglement with classical communication. Phys. Rev. Lett. 83, 1874–1877 (1999)

    Article  Google Scholar 

  18. Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Multipartite nonlocal quantum correlations resistant to imperfections. Phys. Rev. A 73, 012321 (2006)

    Article  Google Scholar 

  19. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proc. 26th CCC 2011, pp. 157–166 (2011)

    Google Scholar 

  20. Lovász, L.: Communication Complexity: a Survey. In: Paths, Flows, and VLSI Layout, B.H. Korte edition. Springer (1990)

    Google Scholar 

  21. Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication complexity. SIAM J. Discrete Math. 8(1), 76–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. In: Proc. 26th FOCS 1985, pp. 429–442 (1985)

    Google Scholar 

  23. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols and logspace-hard pseudorandom sequences. In: Proc. 21st STOC 1989, pp. 1–11 (1989)

    Google Scholar 

  24. Newman, I.: Private vs. common random bits in communication complexity. Information Processing Letters 39(2), 61–71 (1991)

    Article  Google Scholar 

  25. Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l 1. In: Proc. 46th FOCS 2005, pp. 53–62 (2005)

    Google Scholar 

  26. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Computing 1, 47–79 (2005)

    Article  MathSciNet  Google Scholar 

  27. Høyer, P., de Wolf, R.: Improved Quantum Communication Complexity Bounds for Disjointness and Equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 299–310. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Jain, R., Klauck, H., Nayak, A.: Direct product theorems for communication complexity via subdistribution bounds. In: Proc. 40th STOC 2008, pp. 599–608 (2008)

    Google Scholar 

  29. Brunner, N., Pironio, S., Acín, A., Gisin, N., Méthot, A., Scarani, V.: Testing the dimension of Hilbert spaces. Phys. Rev. Lett. 100, 210503 (2008)

    Article  MathSciNet  Google Scholar 

  30. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Google Scholar 

  31. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proc. 42nd FOCS 2001, pp. 270–278 (2001)

    Google Scholar 

  32. Braverman, M., Weinstein, O.: A discrepancy lower bound for information complexity. Technical Report 12-164, ECCC (2011)

    Google Scholar 

  33. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on information complexity via zero-communication protocols and applications. Technical Report 12-038, ECCC (2012)

    Google Scholar 

  34. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics 10(7), 073013 (2008)

    Google Scholar 

  35. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Proc. 23rd CCC 2008, pp. 199–210 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laplante, S., Lerays, V., Roland, J. (2012). Classical and Quantum Partition Bound and Detector Inefficiency. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics