Nothing Special   »   [go: up one dir, main page]

DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

C. Defant

Colin Defant

Massachusetts Institute of Technology

email: colindefant@gmail.com

D. Dong

David Dong

Eastside Preparatory School

email: etsptq@gmail.com

A. Lee

Alan Lee

Henry M. Gunn High School

email: alandongjinlee@gmail.com

M. Wei

Michelle Wei

The Harker School

email: michelle.wei89@gmail.com

Title:

Connectedness and cycle spaces of friends-and-strangers graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(3) (2024) 1143-1168

Received: 2022-10-15 , Revised: 2023-02-11 , Accepted: 2023-02-17 , Available online: 2023-04-04 , https://doi.org/10.7151/dmgt.2492

Abstract:

If $X=(V(X),E(X))$ and $Y=(V(Y),E(Y))$ are $n$-vertex graphs, then their friends-and-strangers graph $\mathsf{FS}(X,Y)$ is the graph whose vertices are the bijections from $V(X)$ to $V(Y)$ in which two bijections $\sigma$ and $\sigma'$ are adjacent if and only if there is an edge $\{a,b\}\in E(X)$ such that $\{\sigma(a),\sigma(b)\}\in E(Y)$ and $\sigma'=\sigma\circ (a b)$, where $(a b)$ is the permutation of $V(X)$ that swaps $a$ and $b$. We prove general theorems that provide necessary and/or sufficient conditions for $\mathsf{FS}(X,Y)$ to be connected. As a corollary, we obtain a complete characterization of the graphs $Y$ such that $\mathsf{FS}(\mathsf{Dand}_{k,n},Y)$ is connected, where $\mathsf{Dand}_{k,n}$ is a dandelion graph; this substantially generalizes a theorem of the first author and Kravitz in the case $k=3$. For specific choices of $Y$, we characterize the spider graphs $X$ such that $\mathsf{FS}(X,Y)$ is connected. In a different vein, we study the cycle spaces of friends-and-strangers graphs. Naatz proved that if $X$ is a path graph, then the cycle space of $\mathsf{FS}(X,Y)$ is spanned by $4$-cycles and $6$-cycles; we show that the same statement holds when $X$ is a cycle and $Y$ has domination number at least $3$. When $X$ is a cycle and $Y$ has domination number at least $2$, our proof sheds light on how walks in $\mathsf{FS}(X,Y)$ behave under certain Coxeter moves.

Keywords:

friends-and-strangers graph, spider, dandelion, cycle space, Coxeter move

References:

  1. N. Alon, C. Defant and N. Kravitz, Typical and extremal aspects of friends-and-strangers graphs, J. Combin. Theory Ser. B 158 (2023) 3–42.
    https://doi.org/10.1016/j.jctb.2022.03.001
  2. A. Balitskiy and J. Wellman, Flip cycles in plabic graphs, Selecta Math. 26 (2020) 15.
    https://doi.org/10.1007/s00029-020-0544-1
  3. K. Bangachev, On the asymmetric generalizations of two extremal questions on friends-and-strangers graphs, European J. Combin. 104 (2022) 103529.
    https://doi.org/10.1016/j.ejc.2022.103529
  4. C. Defant, Toric promotion, Proc. Amer. Math. Soc. 151 (2023) 45–57.
    https://doi.org/10.1090/proc/16079
  5. C. Defant and N. Kravitz, Friends and strangers walking on graphs, Comb. Theory 1 (2021).
    https://doi.org/10.5070/C61055363
  6. S. Felsner, L. Kleist, T. Mütze and L. Sering, Rainbow cycles in flip graphs, SIAM J. Discrete Math. 34 (2020) 1–39.
    https://doi.org/10.1137/18M1216456
  7. R. Jeong, Diameters of connected components of friends-and-strangers graphs are not polynomially bounded (2022).
    arXiv: 2201.00665
  8. R. Jeong, On structural aspects of friends-and-strangers graphs (2022).
    arXiv: 2203.10337
  9. M. Naatz, The graph of linear extensions revisited, SIAM J. Discrete Math. 13 (2000) 354–369.
    https://doi.org/10.1137/S0895480199352609
  10. R.P. Stanley, An equivalence relation on the symmetric group and multiplicity-free flag $h $-vectors, J. Comb. 3 (2012) 277–298.
    https://doi.org/10.4310/JOC.2012.v3.n3.a2
  11. L. Wang and Y. Chen, Connectivity of friends-and-strangers graphs on random pairs, Discrete Math. 346(3) (2023) 113266.
    https://doi.org/10.1016/j.disc.2022.113266
  12. R.M. Wilson, Graph puzzles, homotopy, and the alternating group, J. Combin. Theory Ser. B 16 (1974) 86–96.
    https://doi.org/10.1016/0095-8956(74)90098-7

Close