Nothing Special   »   [go: up one dir, main page]

DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

J. Martí-Farré

Jaume Martí-Farré

Universitat Politècnica de Catalunya

email: jaume.marti@upc.edu

M. Mora

Mercé Mora

email: merce.mora@upc.edu

M.L. Puertas

Maria Luz Puertas

University of Almería

email: mpuertas@ual.es

J.L. Ruiz

José Luis Ruiz

Universitat Politècnica de Catalunya

email: jose.luis.ruiz@upc.edu

Title:

Elimination properties for minimal dominating sets of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 43(1) (2023) 137-149

Received: 2019-10-01 , Revised: 2020-07-28 , Accepted: 2020-07-28 , Available online: 2020-09-09 , https://doi.org/10.7151/dmgt.2354

Abstract:

A dominating set of a graph is a vertex subset such that every vertex not in the subset is adjacent to at least one in the subset. In this paper we study whenever there exists a new dominating set contained (respectively, containing) the subset obtained by removing a common vertex from the union of two minimal dominating sets. A complete description of the graphs satisfying such elimination properties is provided.

Keywords:

dominating sets, elimination properties, uniform clutters

References:

  1. V. Anusuya and R. Kala, A note on disjoint dominating sets in graphs, Int. J. Contemp. Math. Sciences 7 (2012) 2099–2110.
  2. P. Bose and F. Hurtado, Flips in planar graphs, Comput. Geom. 42 (2009) 60–80.
    https://doi.org/10.1016/j.comgeo.2008.04.001
  3. D.L. Boutin, Determining sets, resolving sets, and the exchange property, Graphs Combin. 25 (2009) 789–806.
    https://doi.org/10.1007/s00373-010-0880-6
  4. G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Ed. (Chapman $\&$ Hall/CRC, Boca Raton, 2005).
  5. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
  6. T.W. Haynes, S.T. Hedetniemi and P.J. Slater (Eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
  7. M.A. Henning, C. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451–6458.
    https://doi.org/10.1016/j.disc.2009.06.017
  8. M.M. Kanté, V. Limouzy, A. Mary and L. Nourine, On the enumeration of minimal dominating sets and related notions, SIAM J. Discrete Math. 28 (2014) 1916–1929.
    https://doi.org/10.1137/120862612
  9. J. Martí-Farré, M. Mora and J.L. Ruiz, Uniform clutters and dominating sets of graphs, Discrete Appl. Math. 263 (2019) 220–233.
    https://doi.org/10.1016/j.dam.2018.03.028
  10. J.G. Oxley, Matroid Theory, Second Ed. (Oxford Graduate Text in Mathematics, Oxford University Press, New York, 2011).
  11. D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).
  12. D.B. West, Introduction to Graph Theory, Second Ed. (Prentice Hall, Upper Saddle River, 2001).

Close