Nothing Special   »   [go: up one dir, main page]

2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演

单新建, 屈春燕, 龚文瑜, 赵德政, 张迎峰, 张国宏, 宋小刚, 刘云华, 张桂芳. 2017. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演. 地球物理学报, 60(12): 4527-4536, doi: 10.6038/cjg20171201
引用本文: 单新建, 屈春燕, 龚文瑜, 赵德政, 张迎峰, 张国宏, 宋小刚, 刘云华, 张桂芳. 2017. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演. 地球物理学报, 60(12): 4527-4536, doi: 10.6038/cjg20171201
SHAN Xin-Jian, QU Chun-Yan, GONG Wen-Yu, ZHAO De-Zheng, ZHANG Ying-Feng, ZHANG Guo-Hong, SONG Xiao-Gang, LIU Yun-Hua, ZHANG Gui-Fang. 2017. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion. Chinese Journal of Geophysics (in Chinese), 60(12): 4527-4536, doi: 10.6038/cjg20171201
Citation: SHAN Xin-Jian, QU Chun-Yan, GONG Wen-Yu, ZHAO De-Zheng, ZHANG Ying-Feng, ZHANG Guo-Hong, SONG Xiao-Gang, LIU Yun-Hua, ZHANG Gui-Fang. 2017. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion. Chinese Journal of Geophysics (in Chinese), 60(12): 4527-4536, doi: 10.6038/cjg20171201

2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演

  • 基金项目:

    九寨沟地震科考项目,国家自然科学基金重点项目(41631073)资助

详细信息
    作者简介:

    单新建, 男, 1966年生, 研究员/副所长, 博士生导师, 主要从事InSAR地壳形变与地球动力学研究.E-mail:xjshan@163.com

    通讯作者: 屈春燕, 女, 1966年生, 研究员, 博士生导师, 主要从事InSAR技术在地震及地壳形变领域的应用研究.E-mail:dqyquchy@163.com
  • 中图分类号: P541;P315

Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion

More Information
  • 基于InSAR技术,利用欧空局升降轨Sentinel-1A/IW宽幅数据,获取了2017年8月8日四川九寨沟7.0级地震InSAR同震形变场,并以升降轨InSAR观测结果为约束,反演了断层滑动分布,基于三种不同接收断层计算了同震库仑应力变化.结果表明,同震形变场发生在塔藏断裂、岷江断裂和虎牙断裂交汇的三角地带,升降轨干涉位移均显示本次地震的形变场影响范围约为50 km×50 km,形变场长轴方向为NW向,升降轨观测的形变量相反,反映断层运动性质以走滑运动为主,升降轨数据观测得到的最大LOS(Line of Sight,视线向)形变量分别为~22 cm和~14 cm.非对称形变场反映出断层两侧的运动差异.反演结果显示,最大滑动量约为1 m,平均滑动角为-9°,矩震级为MW6.5,地震破裂主要集中在地下1~15 km深度范围内,但整体而言本次地震破裂较为充分,基本将该区域1973年及1976年4次> MW6.0地震的破裂空区完全破裂.考虑到塔藏断裂和虎牙断裂的运动性质,可初步判定发震断层为虎牙断裂北侧延伸分支.基于三种不同接收断层模型的同震库仑应力变化计算结果反映出该区域以应力释放为主,进一步触发较大走滑型余震的可能性不大.

  • 加载中
  • 图 1 

    (a) 青藏高原东缘地震构造背景,(b)本次地震震中区地震构造略图

    Figure 1. 

    (a) Tectonic setting in eastern margin of Tibetan Plateau. (b) Aftershocks distribution and tectonic setting in the epicentral area of the Jiuzhaigou earthquake

    图 2 

    九寨沟MS7.0地震降轨同震形变场

    Figure 2. 

    The descending coseismic interferogram (a) and deformation field (b) of MS7.0 Jiuzhaigou earthquake

    图 3 

    九寨沟MS7.0地震升轨同震形变场

    Figure 3. 

    The ascending coseismic interferogram (a) and deformation field (b) of MS7.0 Jiuzhaigou earthquake

    图 4 

    九寨沟MS7.0地震升降轨同震位移剖面(剖面位置见图 2图 3);红色为降轨形变场剖面,淡蓝色为升轨形变场剖面

    Figure 4. 

    The LOS displacement profiles of the coseismic ascending (light blue dots) and descending (red dots) deformation field of the MS7.0 event; the location of profiles can be seen in Figs. 2 and 3

    图 5 

    基于InSAR数据反演的同震滑动分布模型

    Figure 5. 

    Fault slip distribution from inversions constrained by InSAR

    图 6 

    断层滑动分布三维显示

    Figure 6. 

    Fault slip distribution from InSAR inversion shown in 3D

    图 7 

    断层滑动分布反演拟合情况: (a—c)分别对应升轨InSAR数据的观测值、模拟值和残差;(d—f)分别对应降轨InSAR数据的观测值、模拟值和残差

    Figure 7. 

    Observation, simulation and residual from ascending (a—c) and descending (d—f) InSAR data and inversion

    图 8 

    九寨沟MS7.0地震同震库仑应力变化(接收断层为虎牙断裂本身)

    Figure 8. 

    Coseismic Coulomb stress change caused by the Jiuzhaigou MS7.0 earthquake using the Huya fault as the receiver fault

    图 9 

    九寨沟MS7.0地震同震库仑应力变化(接收断层为岷江断裂)

    Figure 9. 

    Coseismic Coulomb stress change caused by the Jiuzhaigou MS7.0 earthquake using the Minjiang fault as the receiver fault

    图 10 

    九寨沟MS7.0地震同震库仑应力变化(接收断层为塔藏断裂)

    Figure 10. 

    Coseismic Coulomb stress change caused by the Jiuzhaigou MS7.0 earthquake using the Tazang fault as the receiver fault

  •  

    Chen C Y, Ren J W, Meng G J, et al. 2012. Analysis of modern activity of major faults in northeast margin of Baryan-Har block. Journal of Geodesy and Geodynamics (in Chinese), 32(3):27-30. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201203006.htm

     

    Deng Q D. 2007. Map of Active Tectonics in China (in Chinese). Beijing:Seismological Press.

     

    Deng Q D, Cheng S P, Ma J, et a1. 2014. Seismic activities and earthquake potential in the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 57(7):2025-2042, doi:10.6038/cjg20140701.

     

    Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109:B02303, doi:10.1029/2003JB002607.

     

    Scholz C H. 1990. The Mechanics of Earthquakes and Faulting. New York:Cambridge University Press, 439.

     

    Tang R K, Lu L K. 1981. On the seismogeological characteristics of 1976 Songpan-Pingwu earthquakes. Seismology and Geology (in Chinese), 3(2):41-47. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198102007.htm

     

    Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California:Animations built on earthquake stress transfer. Journal of Geophysical Research, 110:B05S16, doi:10.1029/2004JB003415.

     

    Toda S, Lin J, Meghraoui M, et al. 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35:L17305, doi:10.1029/2008GL034903.

     

    Wang R, Motagh M, Walter T R. 2008. Inversion of slip distribution from coseismic deformation data by a sensitivity-based iterative fitting (SBIF) method.//EGU General Assembly 2008. EGU, 10:EGU2008-A-07971.

     

    Zhou C J. 2014. The change of stress field in margin of Bayankala block and its influence of occurrence of strong earthquakes[Ph. D. thesis] (in Chinese). Beijing:Chinese Academy of Geological Sciences.http://cdmd.cnki.com.cn/Article/CDMD-82501-1015584763.htm

     

    Zhu H, Wen X Z. 2009. Stress triggering process of the 1973 to 1976 Songpan, Sichuan, sequence of strong earthquakes. Chinese J. Geophys. (in Chinese), 52(4):994-1003, doi:10.3969/j.issn.0001-5733.2009.04.016.

     

    陈长云, 任金卫, 孟国杰等. 2012.巴颜喀拉块体北东缘主要断裂现今活动性分析.大地测量与地球动力学, 32(3):27-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dkxb201203006&dbname=CJFD&dbcode=CJFQ

     

    邓起东. 2007.中国活动构造图.北京:地震出版社.

     

    邓起东, 程绍平, 马瑾等. 2014.青藏高原地震活动特征及当前地震活动形势.地球物理学报, 57(7):2025-2042, doi:10.6038/cjg20140701. http://www.geophy.cn/CN/abstract/abstract10474.shtml

     

    唐荣昌, 陆联康. 1981. 1976年松潘、平武地震的地震地质特征.地震地质, 3(2):41-47. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzdz198102007&dbname=CJFD&dbcode=CJFQ

     

    周春景. 2014. 巴颜喀拉块体边界应力场变化及其对强震发生的影响[博士论文]. 北京: 中国地质科学院.http://cdmd.cnki.com.cn/Article/CDMD-82501-1015584763.htm

     

    朱航, 闻学泽. 2009. 1973~1976年四川松潘强震序列的应力触发过程.地球物理学报, 52(4):994-1003, doi:10.3969/j.issn.0001-5733.2009.04.016. http://www.geophy.cn/CN/abstract/abstract1001.shtml

  • 加载中

(10)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-08-19
修回日期:  2017-11-08
上线日期:  2017-12-05

目录