Nothing Special   »   [go: up one dir, main page]


Extending the Range of Temporal Specifications of the Run-Time Event Calculus

Authors Periklis Mantenoglou , Alexander Artikis



PDF
Thumbnail PDF

File

LIPIcs.TIME.2024.6.pdf
  • Filesize: 0.78 MB
  • 14 pages

Document Identifiers

Author Details

Periklis Mantenoglou
  • National and Kapodistrian University of Athens, Greece
  • NCSR "Demokritos", Athens, Greece
Alexander Artikis
  • University of Piraeus, Greece
  • NCSR "Demokritos", Athens, Greece

Cite As Get BibTex

Periklis Mantenoglou and Alexander Artikis. Extending the Range of Temporal Specifications of the Run-Time Event Calculus. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.TIME.2024.6

Abstract

Composite event recognition (CER) frameworks reason over streams of low-level, symbolic events in order to detect instances of spatio-temporal patterns defining high-level, composite activities. The Event Calculus is a temporal, logical formalism that has been used to define composite activities in CER, while RTEC_{∘} is a formal CER framework that detects composite activities based on their Event Calculus definitions. RTEC_{∘}, however, cannot handle every possible set of Event Calculus definitions for composite activities, limiting the range of CER applications supported by RTEC_{∘}. We propose RTEC_{fl}, an extension of RTEC_{∘} that supports arbitrary composite activity specifications in the Event Calculus. We present the syntax, semantics, reasoning algorithms and time complexity of RTEC_{fl}. Our analysis demonstrates that RTEC_{fl} extends the scope of RTEC_{∘}, supporting every possible set of Event Calculus definitions for composite activities, while maintaining the high reasoning efficiency of RTEC_{∘}.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Temporal reasoning
Keywords
  • Event Calculus
  • temporal pattern matching
  • composite event recognition

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras. Probabilistic complex event recognition: A survey. Commun. ACM, 50(5):71:1-71:31, 2017. URL: https://doi.org/10.1145/3117809.
  2. Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. A logic programming approach to activity recognition. In EIMM Workshop in MM, pages 3-8, 2010. URL: https://doi.org/10.1145/1877937.1877941.
  3. Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event recognition. IEEE Trans. Knowl. Data Eng., 27(4):895-908, 2015. URL: https://doi.org/10.1109/TKDE.2014.2356476.
  4. Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive stream reasoning with laser. In ISWC, volume 10587, pages 87-103, 2017. URL: https://doi.org/10.1007/978-3-319-68288-4_6.
  5. Harald Beck, Minh Dao-Tran, and Thomas Eiter. LARS: A logic-based framework for analytic reasoning over streams. Artif. Intell., 261:16-70, 2018. URL: https://doi.org/10.1016/J.ARTINT.2018.04.003.
  6. Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for incremental asp-based stream reasoning. Theory Pract. Log. Program., 17(5-6):744-763, 2017. URL: https://doi.org/10.1017/S1471068417000370.
  7. Stefano Bragaglia, Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Reactive event calculus for monitoring global computing applications. In Logic Programs, Norms and Action - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday, volume 7360, pages 123-146, 2012. URL: https://doi.org/10.1007/978-3-642-29414-3_8.
  8. Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. Querying log data with metric temporal logic. J. Artif. Intell. Res., 62:829-877, 2018. URL: https://doi.org/10.1613/JAIR.1.11229.
  9. Stefano Bromuri, Visara Urovi, and Kostas Stathis. icampus: A connected campus in the ambient event calculus. Int. J. Ambient Comput. Intell., 2(1):59-65, 2010. URL: https://doi.org/10.4018/JACI.2010010105.
  10. Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and Stijn Vansummeren. CORE: a complex event recognition engine. Proc. VLDB Endow., 15(9):1951-1964, 2022. URL: https://doi.org/10.14778/3538598.3538615.
  11. Francesco Calimeri, Marco Manna, Elena Mastria, Maria Concetta Morelli, Simona Perri, and Jessica Zangari. I-dlv-sr: A stream reasoning system based on I-DLV. Theory Pract. Log. Program., 21(5):610-628, 2021. URL: https://doi.org/10.1017/S147106842100034X.
  12. Iliano Cervesato and Angelo Montanari. A calculus of macro-events: Progress report. In TIME, pages 47-58, 2000. URL: https://doi.org/10.1109/TIME.2000.856584.
  13. Hervé Chaudet. Extending the event calculus for tracking epidemic spread. Artif. Intell. Medicine, 38(2):137-156, 2006. URL: https://doi.org/10.1016/J.ARTMED.2005.06.001.
  14. L. Chittaro and A. Montanari. Efficient temporal reasoning in the cached event calculus. Comput. Intell., 12(3):359-382, 1996. URL: https://doi.org/10.1111/J.1467-8640.1996.TB00267.X.
  15. Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293-322. Plemum Press, 1977. URL: https://doi.org/10.1007/978-1-4684-3384-5_11.
  16. Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to complex event processing. ACM Comput. Surv., 44(3), 2012. URL: https://doi.org/10.1145/2187671.2187677.
  17. C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal focusing and hierarchisation. In IJCAI, pages 324-329, 2007. Google Scholar
  18. Thomas Eiter, Paul Ogris, and Konstantin Schekotihin. A distributed approach to LARS stream reasoning (system paper). Theory Pract. Log. Program., 19(5-6):974-989, 2019. URL: https://doi.org/10.1017/S1471068419000309.
  19. Nicola Falcionelli, Paolo Sernani, Albert Brugués de la Torre, Dagmawi Neway Mekuria, Davide Calvaresi, Michael Schumacher, Aldo Franco Dragoni, and Stefano Bromuri. Indexing the event calculus: Towards practical human-readable personal health systems. Artif. Intell. Medicine, 96:154-166, 2019. URL: https://doi.org/10.1016/J.ARTMED.2018.10.003.
  20. Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N. Garofalakis. Complex event recognition in the big data era: a survey. VLDB J., 29(1):313-352, 2020. URL: https://doi.org/10.1007/S00778-019-00557-W.
  21. Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. A formal framework for complex event recognition. ACM Trans. Database Syst., 46(4):16:1-16:49, 2021. URL: https://doi.org/10.1145/3485463.
  22. Özgür Kafali, Alfonso E. Romero, and Kostas Stathis. Agent-oriented activity recognition in the event calculus: An application for diabetic patients. Comput. Intell., 33(4):899-925, 2017. URL: https://doi.org/10.1111/COIN.12121.
  23. Nikos Katzouris, Georgios Paliouras, and Alexander Artikis. Online learning probabilistic event calculus theories in answer set programming. Theory Pract. Log. Program., 23(2):362-386, 2023. URL: https://doi.org/10.1017/S1471068421000107.
  24. Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Gener. Comput., 4(1):67-95, 1986. URL: https://doi.org/10.1007/BF03037383.
  25. Periklis Mantenoglou, Dimitrios Kelesis, and Alexander Artikis. Complex event recognition with allen relations. In KR, pages 502-511, 2023. URL: https://doi.org/10.24963/KR.2023/49.
  26. Periklis Mantenoglou, Manolis Pitsikalis, and Alexander Artikis. Stream reasoning with cycles. In KR, pages 544-553, 2022. Google Scholar
  27. Adrian Paschke. Eca-ruleml: An approach combining ECA rules with temporal interval-based KR event/action logics and transactional update logics. CoRR, abs/cs/0610167, 2006. Google Scholar
  28. Adrian Paschke and Martin Bichler. Knowledge representation concepts for automated SLA management. Decis. Support Syst., 46(1):187-205, 2008. URL: https://doi.org/10.1016/J.DSS.2008.06.008.
  29. Kostas Patroumpas, Alexander Artikis, Nikos Katzouris, Marios Vodas, Yannis Theodoridis, and Nikos Pelekis. Event recognition for maritime surveillance. In EDBT, pages 629-640, 2015. URL: https://doi.org/10.5441/002/EDBT.2015.63.
  30. Manolis Pitsikalis, Alexander Artikis, Richard Dreo, Cyril Ray, Elena Camossi, and Anne-Laure Jousselme. Composite event recognition for maritime monitoring. In DEBS, pages 163-174, 2019. URL: https://doi.org/10.1145/3328905.3329762.
  31. J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting in multi-agent systems. Comput. J., 49(2):156-170, 2006. URL: https://doi.org/10.1093/COMJNL/BXH164.
  32. Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier. Event trend aggregation under rich event matching semantics. In SIGMOD, pages 555-572, 2019. URL: https://doi.org/10.1145/3299869.3319862.
  33. Teodor C. Przymusinski. On the declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming, pages 193-216. Morgan Kaufmann, 1988. URL: https://doi.org/10.1016/B978-0-934613-40-8.50009-9.
  34. Nausheen Saba Shahid, Dan O'Keeffe, and Kostas Stathis. A knowledge representation framework for evolutionary simulations with cognitive agents. In ICTAI, pages 361-368. IEEE, 2023. URL: https://doi.org/10.1109/ICTAI59109.2023.00059.
  35. M. Sirbu. Credits and debits on the Internet. IEEE Spectrum, 34(2):23-29, 1997. Google Scholar
  36. Efthimis Tsilionis, Alexander Artikis, and Georgios Paliouras. Incremental event calculus for run-time reasoning. J. Artif. Intell. Res., 73:967-1023, 2022. URL: https://doi.org/10.1613/JAIR.1.12695.
  37. Przemyslaw Andrzej Walega, Mark Kaminski, and Bernardo Cuenca Grau. Reasoning over streaming data in metric temporal datalog. In AAAI, pages 3092-3099, 2019. URL: https://doi.org/10.1609/AAAI.V33I01.33013092.
  38. Przemyslaw Andrzej Walega, Mark Kaminski, Dingmin Wang, and Bernardo Cuenca Grau. Stream reasoning with datalogmtl. J. Web Semant., 76:100776, 2023. URL: https://doi.org/10.1016/J.WEBSEM.2023.100776.
  39. Bo Zhao, Han van der Aa, Thanh Tam Nguyen, Quoc Viet Hung Nguyen, and Matthias Weidlich. EIRES: efficient integration of remote data in event stream processing. In SIGMOD, pages 2128-2141, 2021. URL: https://doi.org/10.1145/3448016.3457304.
  40. Bartosz Zielinski. Explanatory denotational semantics for complex event patterns. Formal Aspects Comput., 35(4):23:1-23:37, 2023. URL: https://doi.org/10.1145/3608486.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail