@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2018.34,
author = {Edelsbrunner, Herbert and Osang, Georg},
title = {{The Multi-cover Persistence of Euclidean Balls}},
booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)},
pages = {34:1--34:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-066-8},
ISSN = {1868-8969},
year = {2018},
volume = {99},
editor = {Speckmann, Bettina and T\'{o}th, Csaba D.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.34},
URN = {urn:nbn:de:0030-drops-87471},
doi = {10.4230/LIPIcs.SoCG.2018.34},
annote = {Keywords: Delaunay mosaics, hyperplane arrangements, discrete Morse theory, zigzag modules, persistent homology}
}