Nothing Special   »   [go: up one dir, main page]


Dynamic L-Budget Clustering of Curves

Authors Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Lukas Plätz, Lea Thiel, Sampson Wong



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.18.pdf
  • Filesize: 1.21 MB
  • 17 pages

Document Identifiers

Author Details

Kevin Buchin
  • Faculty of Computer Science, TU Dortmund University, Germany
Maike Buchin
  • Faculty of Computer Science, Ruhr University Bochum, Germany
Joachim Gudmundsson
  • Faculty of Engineering, The University of Sydney, Australia
Lukas Plätz
  • Faculty of Computer Science, Ruhr University Bochum, Germany
Lea Thiel
  • Faculty of Computer Science, Ruhr University Bochum, Germany
Sampson Wong
  • Department of Computer Science, University of Copenhagen, Denmark

Cite AsGet BibTex

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Lukas Plätz, Lea Thiel, and Sampson Wong. Dynamic L-Budget Clustering of Curves. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.18

Abstract

A key goal of clustering is data reduction. In center-based clustering of complex objects therefore not only the number of clusters but also the complexity of the centers plays a crucial role. We propose L-Budget Clustering as unifying perspective on this task, optimizing the clustering under the constraint that the summed complexity of all centers is at most L. We present algorithms for clustering planar curves under the Fréchet distance, but note that our algorithms more generally apply to objects in metric spaces if a notion of simplification of objects is applicable. A scenario in which data reduction is of particular importance is when the space is limited. Our main result is an efficient (8 + ε)-approximation algorithm with a (1 + ε)-resource augmentation that maintains an L-budget clustering under insertion of curves using only O(Lε^{-1}) space and O^*(L³log(L) + L²log(r^*/r₀)) time where O^* hides factors of ε^{-1}.

Subject Classification

ACM Subject Classification
  • Theory of computation → Facility location and clustering
Keywords
  • clustering
  • streaming algorithm
  • polygonal curves
  • Fréchet distance
  • storage efficiency
  • simplification
  • approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohammad Ali Abam, Mark de Berg, Peter Hachenberger, and Alireza Zarei. Streaming algorithms for line simplification. In Proc. 23rd SoCG, pages 175-183. ACM, 2007. URL: https://doi.org/10.1145/1247069.1247103.
  2. Peyman Afshani and Anne Driemel. On the complexity of range searching among curves. In Proc. 2018 SODA, pages 898-917, 2018. URL: https://doi.org/10.1137/1.9781611975031.58.
  3. Pankaj K Agarwal, Sariel Har-Peled, Nabil H Mustafa, and Yusu Wang. Near-linear time approximation algorithms for curve simplification. Algorithmica, 42:203-219, 2005. Google Scholar
  4. Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75-91, 1995. Google Scholar
  5. Julian Baldus and Karl Bringmann. A fast implementation of near neighbors queries for Fréchet distance (GIS cup). In Proc. 25th ACM SIGSPATIAL, SIGSPATIAL '17, 2017. URL: https://doi.org/10.1145/3139958.3140062.
  6. Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov, and Sampson Wong. (k, l)-medians clustering of trajectories using continuous dynamic time warping. In Proc. 28th ACM SIGSPATIAL, SIGSPATIAL '20, pages 99-110. ACM, 2020. URL: https://doi.org/10.1145/3397536.3422245.
  7. Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Lukas Plätz, Lea Thiel, and Sampson Wong. L-Budget Clustering (SWAT 24). Software, swhId: https://archive.softwareheritage.org/swh:1:dir:c28806ab33cb4a564e1d492efd322b1dc32f7245;origin=https://github.com/NathenMat/SWAT24;visit=swh:1:snp:a052784ff6c68e081ad8aefeaedc032aef15e906;anchor=swh:1:rev:1d5a24b78bbc02b2b3c1e30bce4378db47c66101, (visited on 27/05/2024). URL: https://github.com/NathenMat/SWAT24.
  8. Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna, Maarten Löffler, and Martijn Struijs. Approximating (k, 𝓁)-center clustering for curves. In Proc. 30th SODA, pages 2922-2938, 2019. Google Scholar
  9. Kevin Buchin, Anne Driemel, Natasja van de L'Isle, and André Nusser. klcluster: Center-based clustering of trajectories. In Proc. 27th ACM SIGSPATIAL, pages 496-499, 2019. Google Scholar
  10. Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k,l)-median clustering for polygonal curves. ACM Trans. Algorithms, 19(1), February 2023. URL: https://doi.org/10.1145/3559764.
  11. Wai-sum Chan and Francis Yuk Lun Chin. Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geom. Appl., 6:59-77, 1996. Google Scholar
  12. Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering and dynamic information retrieval. In Proc. 29th STOC, pages 626-635, 1997. Google Scholar
  13. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985. URL: https://doi.org/10.1016/0304-3975(85)90224-5.
  14. Leonidas J Guibas, John E Hershberger, Joseph SB Mitchell, and Jack Scott Snoeyink. Approximating polygons and subdivisions with minimum-link paths. Int. J. Comput. Geom. Appl., 3(04):383-415, 1993. Google Scholar
  15. Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms for bottleneck problems. J. ACM, 33(3):533-550, 1986. URL: https://doi.org/10.1145/5925.5933.
  16. Hiroshi Imai and Masao Iri. Polygonal approximations of a curve — formulations and algorithms. In Computational Morphology, volume 6 of Machine Intelligence and Pattern Recognition, pages 71-86. North-Holland, 1988. URL: https://doi.org/10.1016/B978-0-444-70467-2.50011-4.
  17. Richard Mann, Robin Freeman, Michael Osborne, Roman Garnett, Chris Armstrong, Jessica Meade, Dora Biro, Tim Guilford, and Stephen Roberts. Objectively identifying landmark use and predicting flight trajectories of the homing pigeon using gaussian processes. Journal of The Royal Society Interface, 8(55):210-219, 2011. Google Scholar
  18. Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering with outliers and with anonymity. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 165-178, 2008. URL: https://doi.org/10.1007/978-3-540-85363-3_14.
  19. Majid Mirzanezhad. On approximate near-neighbors search under the (continuous) Fréchet distance in higher dimensions. Information Processing Letters, 183:106405, 2024. URL: https://doi.org/10.1016/j.ipl.2023.106405.
  20. Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola Wenk. Global curve simplification. In Proc. 27th ESA, volume 144 of Leibniz International Proceedings in Informatics (LIPIcs), pages 67:1-67:14, 2019. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.67.
  21. Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simplification using the hausdorff and fréchet distance. Journal of Computational Geometry, 11(1):1-25, 2020. URL: https://doi.org/10.20382/jocg.v11i1a1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail