Nothing Special   »   [go: up one dir, main page]


A Characterization of Wreath Products Where Knapsack Is Decidable

Authors Pascal Bergsträßer , Moses Ganardi , Georg Zetzsche



PDF
Thumbnail PDF

File

LIPIcs.STACS.2021.11.pdf
  • Filesize: 0.77 MB
  • 17 pages

Document Identifiers

Author Details

Pascal Bergsträßer
  • Fachbereich Informatik, Technische Universität Kaiserslautern, Germany
Moses Ganardi
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Georg Zetzsche
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Cite AsGet BibTex

Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A Characterization of Wreath Products Where Knapsack Is Decidable. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.STACS.2021.11

Abstract

The knapsack problem for groups was introduced by Miasnikov, Nikolaev, and Ushakov. It is defined for each finitely generated group G and takes as input group elements g_1,…,g_n,g ∈ G and asks whether there are x_1,…,x_n ≥ 0 with g_1^{x_1}⋯ g_n^{x_n} = g. We study the knapsack problem for wreath products G≀H of groups G and H. Our main result is a characterization of those wreath products G≀H for which the knapsack problem is decidable. The characterization is in terms of decidability properties of the indiviual factors G and H. To this end, we introduce two decision problems, the intersection knapsack problem and its restriction, the positive intersection knapsack problem. Moreover, we apply our main result to H₃(ℤ), the discrete Heisenberg group, and to Baumslag-Solitar groups BS(1,q) for q ≥ 1. First, we show that the knapsack problem is undecidable for G≀H₃(ℤ) for any G ≠ 1. This implies that for G ≠ 1 and for infinite and virtually nilpotent groups H, the knapsack problem for G≀H is decidable if and only if H is virtually abelian and solvability of systems of exponent equations is decidable for G. Second, we show that the knapsack problem is decidable for G≀BS(1,q) if and only if solvability of systems of exponent equations is decidable for G.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Theory and algorithms for application domains
Keywords
  • knapsack
  • wreath products
  • decision problems in group theory
  • decidability
  • discrete Heisenberg group
  • Baumslag-Solitar groups

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over commuting matrices. In Proceedings of SODA 1996, pages 498-507. ACM/SIAM, 1996. Google Scholar
  2. G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups. Bulletin of the American Mathematical Society, 68(3):199-201, 1962. URL: https://doi.org/10.1090/S0002-9904-1962-10745-9.
  3. P. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix equations and hilbert’s tenth problem. International Journal of Algebra and Computation, 18(8):1231-1241, 2008. URL: https://doi.org/10.1142/S0218196708004925.
  4. P. Bell, I. Potapov, and P. Semukhin. On the mortality problem: From multiplicative matrix equations to linear recurrence sequences and beyond. In Proceedings of MFCS 2019, pages 83:1-83:15, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.83.
  5. P. Bergsträßer, M. Ganardi, and G. Zetzsche. A characterization of wreath products where knapsack is decidable, 2021. URL: http://arxiv.org/abs/2101.06132.
  6. F. A. Dudkin and A. V. Treyer. Knapsack problem for baumslag-solitar groups. Siberian Journal of Pure and Applied Mathematics, 18(4):43-55, 2018. Google Scholar
  7. M. Figelius, M. Ganardi, M. Lohrey, and G. Zetzsche. The complexity of knapsack problems in wreath products. In Proceedings of ICALP 2020, pages 126:1-126:18, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.126.
  8. M. Figelius, M. Lohrey, and G. Zetzsche. Closure properties of knapsack semilinear groups, 2019. URL: http://arxiv.org/abs/1911.12857.
  9. E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups. Journal of Symbolic Computation, 74:96-108, 2016. URL: https://doi.org/10.1016/j.jsc.2015.05.006.
  10. M. Ganardi, D. König, M. Lohrey, and G. Zetzsche. Knapsack problems for wreath products. In Proceedings of STACS 2018, volume 96 of LIPIcs, pages 32:1-32:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.32.
  11. M. Ganardi and M. Lohrey, 2020. Personal communication. Google Scholar
  12. M. Gromov. Groups of polynomial growth and expanding maps. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 53(1):53-78, 1981. Google Scholar
  13. F. Gul, M. Sohrabi, and A. Ushakov. Magnus embedding and algorithmic properties of groups f/n^(d). Transactions of the American Mathematical Society, 369(9):6189-6206, 2017. Google Scholar
  14. M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups. Springer-Verlag, New York, 1979. Translated from the second Russian edition. Google Scholar
  15. B. Khoussainov and A. Nerode. Automatic presentations of structures. In International Workshop on Logic and Computational Complexity, pages 367-392. Springer, 1994. Google Scholar
  16. D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of Contemporary Mathematics, pages 138-153. American Mathematical Society, 2016. URL: https://doi.org/10.1090/conm/677.
  17. M. Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545:390-415, 2020. URL: https://doi.org/10.1016/j.jalgebra.2019.04.008.
  18. M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath products. Information and Computation, 243:191-204, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.014.
  19. M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalgamated products. In Proceedings of STACS 2016, volume 47 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1-50:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2016.50.
  20. M. Lohrey and G. Zetzsche. Knapsack in graph groups. Theory of Computing Systems, 62(1):192-246, 2018. URL: https://doi.org/10.1007/s00224-017-9808-3.
  21. M. Lohrey and G. Zetzsche. Knapsack and the power word problem in solvable baumslag-solitar groups. In Proceedings of MFCS 2020, pages 67:1-67:15, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.67.
  22. W. Magnus. On a theorem of Marshall Hall. Annals of Mathematics. Second Series, 40:764-768, 1939. Google Scholar
  23. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993. Google Scholar
  24. J. Matthews. The conjugacy problem in wreath products and free metabelian groups. Transactions of the American Mathematical Society, 121(2):329-339, 1966. Google Scholar
  25. A. Miasnikov, S. Vassileva, and A. Weiß. The conjugacy problem in free solvable groups and wreath products of abelian groups is in TC⁰. Theory of Computing Systems, 63(4):809-832, 2019. Google Scholar
  26. A. Mishchenko and A. Treier. Knapsack problem for nilpotent groups. Groups Complexity Cryptology, 9(1):87-98, 2017. Google Scholar
  27. A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics of Computation, 84:987-1016, 2015. URL: https://doi.org/10.1090/S0025-5718-2014-02880-9.
  28. V. Remeslennikov and V. Sokolov. Some properties of a magnus embedding. Algebra and Logic, 9(5):342-349, 1970. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail