LIPIcs.MFCS.2021.86.pdf
- Filesize: 0.54 MB
- 13 pages
We examine the role that atoms of regular languages play in boolean automata. We observe that the size of a minimal boolean automaton of a regular language is directly related to the number of atoms of the language. We present a method to construct minimal boolean automata, using the atoms of a given regular language. The "illegal" cover problem of the Kameda-Weiner method for NFA minimization implies that using the union operation only to construct an automaton from a cover - as is the case with NFAs -, is not sufficient. We show that by using the union and the intersection operations (without the complementation operation), it is possible to construct boolean automata accepting a given language, for a given maximal cover.
Feedback for Dagstuhl Publishing