Computer Science > Logic in Computer Science
[Submitted on 23 Apr 2024]
Title:More Church-Rosser Proofs in BELUGA
View PDF HTML (experimental)Abstract:We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 23 Apr 2024 11:09:45 UTC (23 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.