Quantum Physics
[Submitted on 4 Apr 2022 (v1), last revised 15 Nov 2023 (this version, v2)]
Title:Diagrammatic Analysis for Parameterized Quantum Circuits
View PDFAbstract:Diagrammatic representations of quantum algorithms and circuits offer novel approaches to their design and analysis. In this work, we describe extensions of the ZX-calculus especially suitable for parameterized quantum circuits, in particular for computing observable expectation values as functions of or for fixed parameters, which are important algorithmic quantities in a variety of applications ranging from combinatorial optimization to quantum chemistry. We provide several new ZX-diagram rewrite rules and generalizations for this setting. In particular, we give formal rules for dealing with linear combinations of ZX-diagrams, where the relative complex-valued scale factors of each diagram must be kept track of, in contrast to most previously studied single-diagram realizations where these coefficients can be effectively ignored. This allows us to directly import a number useful relations from the operator analysis to ZX-calculus setting, including causal cone and quantum gate commutation rules. We demonstrate that the diagrammatic approach offers useful insights into algorithm structure and performance by considering several ansatze from the literature including realizations of hardware-efficient ansatze and QAOA. We find that by employing a diagrammatic representation, calculations across different ansatze can become more intuitive and potentially easier to approach systematically than by alternative means. Finally, we outline how diagrammatic approaches may aid in the design and study of new and more effective quantum circuit ansatze.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Mon, 4 Apr 2022 08:26:20 UTC (104 KB)
[v2] Wed, 15 Nov 2023 11:02:58 UTC (98 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.