Computer Science > Software Engineering
[Submitted on 22 Dec 2022]
Title:A Foundation for Functional Graph Programs: The Graph Transformation Control Algebra (GTA)
View PDFAbstract:Applications of graph transformation (GT) systems often require control structures that can be used to direct GT processes. Most existing GT tools follow a stateful computational model, where a single graph is repeatedly modified "in-place" when GT rules are applied. The implementation of control structures in such tools is not trivial. Common challenges include dealing with the non-determinism inherent to rule application and transactional constraints when executing compositions of GTs, in particular atomicity and isolation. The complexity of associated transaction mechanisms and rule application search algorithms (e.g., backtracking) complicates the definition of a formal foundation for these control structures. Compared to these stateful approaches, functional graph rewriting presents a simpler (stateless) computational model, which simplifies the definition of a formal basis for (functional) GT control structures. In this paper, we propose the "Graph Transformation control Algebra" (GTA) as such a foundation. The GTA has been used as the formal basis for implementing the control structures in the (functional) GT tool "GrapeVine".
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Thu, 22 Dec 2022 11:51:10 UTC (1,981 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.