Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Dec 2023]
Title:TimePillars: Temporally-Recurrent 3D LiDAR Object Detection
View PDF HTML (experimental)Abstract:Object detection applied to LiDAR point clouds is a relevant task in robotics, and particularly in autonomous driving. Single frame methods, predominant in the field, exploit information from individual sensor scans. Recent approaches achieve good performance, at relatively low inference time. Nevertheless, given the inherent high sparsity of LiDAR data, these methods struggle in long-range detection (e.g. 200m) which we deem to be critical in achieving safe automation. Aggregating multiple scans not only leads to a denser point cloud representation, but it also brings time-awareness to the system, and provides information about how the environment is changing. Solutions of this kind, however, are often highly problem-specific, demand careful data processing, and tend not to fulfil runtime requirements. In this context we propose TimePillars, a temporally-recurrent object detection pipeline which leverages the pillar representation of LiDAR data across time, respecting hardware integration efficiency constraints, and exploiting the diversity and long-range information of the novel Zenseact Open Dataset (ZOD). Through experimentation, we prove the benefits of having recurrency, and show how basic building blocks are enough to achieve robust and efficient results.
Submission history
From: Ernesto Lozano Calvo [view email][v1] Fri, 22 Dec 2023 10:25:27 UTC (3,374 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.