Computer Science > Information Theory
[Submitted on 27 Dec 2023 (v1), last revised 28 Aug 2024 (this version, v3)]
Title:Dual-Functional Artificial Noise (DFAN) Aided Robust Covert Communications in Integrated Sensing and Communications
View PDF HTML (experimental)Abstract:This paper investigates covert communications in an integrated sensing and communications system, where a dual-functional base station (called Alice) covertly transmits signals to a covert user (called Bob) while sensing multiple targets, with one of them acting as a potential watcher (called Willie) and maliciously eavesdropping on legitimate communications. To shelter the covert communications, Alice transmits additional dual-functional artificial noise (DFAN) with a varying power not only to create uncertainty at Willie's signal reception to confuse Willie but also to sense the targets simultaneously. Based on this framework, the weighted sum of the sensing beampattern means square error (MSE) and cross correlation is minimized by jointly optimizing the covert communication and DFAN signals subject to the minimum covert rate requirement. The robust design considers both cases of imperfect Willie's CSI (WCSI) and statistical WCSI. Under the worst-case assumption that Willie can adaptively adjust the detection threshold to achieve the best detection performance, the minimum detection error probability (DEP) at Willie is analytically derived in the closed-form expression. The formulated covertness constrained optimization problems are tackled by a feasibility-checking based difference-of-convex relaxation (DC) algorithm utilizing the S-procedure, Bernstein-type inequality, and the DC method. Simulation results validate the feasibility of the proposed scheme and demonstrate the covertness performance gains achieved by our proposed design over various benchmarks.
Submission history
From: Runzhe Tang [view email][v1] Wed, 27 Dec 2023 16:07:08 UTC (718 KB)
[v2] Tue, 27 Aug 2024 13:12:14 UTC (750 KB)
[v3] Wed, 28 Aug 2024 04:47:51 UTC (17,740 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.