Computer Science > Artificial Intelligence
[Submitted on 27 Dec 2023]
Title:General Method for Solving Four Types of SAT Problems
View PDF HTML (experimental)Abstract:Existing methods provide varying algorithms for different types of Boolean satisfiability problems (SAT), lacking a general solution framework. Accordingly, this study proposes a unified framework DCSAT based on integer programming and reinforcement learning (RL) algorithm to solve different types of SAT problems such as MaxSAT, Weighted MaxSAT, PMS, WPMS. Specifically, we first construct a consolidated integer programming representation for four types of SAT problems by adjusting objective function coefficients. Secondly, we construct an appropriate reinforcement learning models based on the 0-1 integer programming for SAT problems. Based on the binary tree search structure, we apply the Monte Carlo tree search (MCTS) method on SAT problems. Finally, we prove that this method can find all optimal Boolean assignments based on Wiener-khinchin law of large Numbers. We experimentally verify that this paradigm can prune the unnecessary search space to find the optimal Boolean assignments for the problem. Furthermore, the proposed method can provide diverse labels for supervised learning methods for SAT problems.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.