Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Dec 2023]
Title:Chain of Generation: Multi-Modal Gesture Synthesis via Cascaded Conditional Control
View PDF HTML (experimental)Abstract:This study aims to improve the generation of 3D gestures by utilizing multimodal information from human speech. Previous studies have focused on incorporating additional modalities to enhance the quality of generated gestures. However, these methods perform poorly when certain modalities are missing during inference. To address this problem, we suggest using speech-derived multimodal priors to improve gesture generation. We introduce a novel method that separates priors from speech and employs multimodal priors as constraints for generating gestures. Our approach utilizes a chain-like modeling method to generate facial blendshapes, body movements, and hand gestures sequentially. Specifically, we incorporate rhythm cues derived from facial deformation and stylization prior based on speech emotions, into the process of generating gestures. By incorporating multimodal priors, our method improves the quality of generated gestures and eliminate the need for expensive setup preparation during inference. Extensive experiments and user studies confirm that our proposed approach achieves state-of-the-art performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.