Computer Science > Networking and Internet Architecture
[Submitted on 25 Dec 2023]
Title:An Intelligent Indoor Positioning Algorithm Based on Wi-Fi and Bluetooth Low Energy
View PDF HTML (experimental)Abstract:Indoor positioning plays a pivotal role in a wide range of applications, from smart homes to industrial automation. In this paper, we propose a comprehensive approach for accurate positioning in indoor environments through the integration of existing Wi-Fi and Bluetooth Low Energy (BLE) devices. The proposed algorithm involves acquiring the received signal strength indicator (RSSI) data from these devices and capturing the complex interactions between RSSI and positions. To enhance the accuracy of the collected data, we first use a Kalman filter for denoising RSSI values, then categorize them into distinct classes using the K-nearest neighbor (KNN) algorithm. Incorporating the filtered RSSI data and the class information obtained from KNN, we then introduce a recurrent neural network (RNN) architecture to estimate the positions with a high precision. We further evaluate the accuracy of our proposed algorithm through testbed experiments using ESP32 system on chip with integrated Wi-Fi and BLE. The results show that we can accurately estimate the positions with an average error of 61.29 cm, which demonstrates a 56\% enhancement compared to the state-of-the-art existing works.
Submission history
From: Hamed Shah-Mansouri [view email][v1] Mon, 25 Dec 2023 14:50:34 UTC (171 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.