Computer Science > Cryptography and Security
[Submitted on 21 Dec 2023]
Title:Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis
View PDF HTML (experimental)Abstract:The power grid is a critical infrastructure that plays a vital role in modern society. Its availability is of utmost importance, as a loss can endanger human lives. However, with the increasing digitalization of the power grid, it also becomes vulnerable to new cyberattacks that can compromise its availability. To counter these threats, intrusion detection systems are developed and deployed to detect cyberattacks targeting the power grid. Among intrusion detection systems, anomaly detection models based on machine learning have shown potential in detecting unknown attack vectors. However, the scarcity of data for training these models remains a challenge due to confidentiality concerns. To overcome this challenge, this study proposes a model for generating synthetic data of multi-stage cyber attacks in the power grid, using attack trees to model the attacker's sequence of steps and a game-theoretic approach to incorporate the defender's actions. This model aims to create diverse attack data on which machine learning algorithms can be trained.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.