Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Dec 2023]
Title:Visual Tomography: Physically Faithful Volumetric Models of Partially Translucent Objects
View PDF HTML (experimental)Abstract:When created faithfully from real-world data, Digital 3D representations of objects can be useful for human or computer-assisted analysis. Such models can also serve for generating training data for machine learning approaches in settings where data is difficult to obtain or where too few training data exists, e.g. by providing novel views or images in varying conditions. While the vast amount of visual 3D reconstruction approaches focus on non-physical models, textured object surfaces or shapes, in this contribution we propose a volumetric reconstruction approach that obtains a physical model including the interior of partially translucent objects such as plankton or insects. Our technique photographs the object under different poses in front of a bright white light source and computes absorption and scattering per voxel. It can be interpreted as visual tomography that we solve by inverse raytracing. We additionally suggest a method to convert non-physical NeRF media into a physically-based volumetric grid for initialization and illustrate the usefulness of the approach using two real-world plankton validation sets, the lab-scanned models being finally also relighted and virtually submerged in a scenario with augmented medium and illumination conditions. Please visit the project homepage at this http URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.