Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Oct 2023]
Title:DiffSpectralNet : Unveiling the Potential of Diffusion Models for Hyperspectral Image Classification
View PDFAbstract:Hyperspectral images (HSI) have become popular for analysing remotely sensed images in multiple domain like agriculture, medical. However, existing models struggle with complex relationships and characteristics of spectral-spatial data due to the multi-band nature and data redundancy of hyperspectral data. To address this limitation, we propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques. Our approach involves a two-step process. First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features. The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification. Then, we employ a pretrained denoising U-Net to extract intermediate hierarchical features for classification. Finally, we use a supervised transformer-based classifier to perform the HSI classification. Through comprehensive experiments on HSI datasets, we evaluate the classification performance of DiffSpectralNet. The results demonstrate that our framework significantly outperforms existing approaches, achieving state-of-the-art performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.