Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 18 Dec 2023 (v1), last revised 24 Dec 2023 (this version, v2)]
Title:A Refining Underlying Information Framework for Monaural Speech Enhancement
View PDF HTML (experimental)Abstract:Supervised speech enhancement has gained significantly from recent advancements in neural networks, especially due to their ability to non-linearly fit the diverse representations of target speech, such as waveform or spectrum. However, these direct-fitting solutions continue to face challenges with degraded speech and residual noise in hearing evaluations. By bridging the speech enhancement and the Information Bottleneck principle in this letter, we rethink a universal plug-and-play strategy and propose a Refining Underlying Information framework called RUI to rise to the challenges both in theory and practice. Specifically, we first transform the objective of speech enhancement into an incremental convergence problem of mutual information between comprehensive speech characteristics and individual speech characteristics, e.g., spectral and acoustic characteristics. By doing so, compared with the existing direct-fitting solutions, the underlying information stems from the conditional entropy of acoustic characteristic given spectral characteristics. Therefore, we design a dual-path multiple refinement iterator based on the chain rule of entropy to refine this underlying information for further approximating target speech. Experimental results on DNS-Challenge dataset show that our solution consistently improves 0.3+ PESQ score over baselines, with only additional 1.18 M parameters. The source code is available at this https URL.
Submission history
From: Rui Cao [view email][v1] Mon, 18 Dec 2023 13:47:26 UTC (14,670 KB)
[v2] Sun, 24 Dec 2023 12:00:01 UTC (15,082 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.