Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Dec 2023]
Title:Implicit Modeling of Non-rigid Objects with Cross-Category Signals
View PDF HTML (experimental)Abstract:Deep implicit functions (DIFs) have emerged as a potent and articulate means of representing 3D shapes. However, methods modeling object categories or non-rigid entities have mainly focused on single-object scenarios. In this work, we propose MODIF, a multi-object deep implicit function that jointly learns the deformation fields and instance-specific latent codes for multiple objects at once. Our emphasis is on non-rigid, non-interpenetrating entities such as organs. To effectively capture the interrelation between these entities and ensure precise, collision-free representations, our approach facilitates signaling between category-specific fields to adequately rectify shapes. We also introduce novel inter-object supervision: an attraction-repulsion loss is formulated to refine contact regions between objects. Our approach is demonstrated on various medical benchmarks, involving modeling different groups of intricate anatomical entities. Experimental results illustrate that our model can proficiently learn the shape representation of each organ and their relations to others, to the point that shapes missing from unseen instances can be consistently recovered by our method. Finally, MODIF can also propagate semantic information throughout the population via accurate point correspondences
Submission history
From: Benjamin Planche [view email][v1] Fri, 15 Dec 2023 22:34:17 UTC (4,020 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.