Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Dec 2023]
Title:A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion
View PDFAbstract:The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.