Computer Science > Machine Learning
[Submitted on 16 Dec 2023]
Title:Degree-based stratification of nodes in Graph Neural Networks
View PDF HTML (experimental)Abstract:Despite much research, Graph Neural Networks (GNNs) still do not display the favorable scaling properties of other deep neural networks such as Convolutional Neural Networks and Transformers. Previous work has identified issues such as oversmoothing of the latent representation and have suggested solutions such as skip connections and sophisticated normalization schemes. Here, we propose a different approach that is based on a stratification of the graph nodes. We provide motivation that the nodes in a graph can be stratified into those with a low degree and those with a high degree and that the two groups are likely to behave differently. Based on this motivation, we modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group. This simple-to-implement modification seems to improve performance across datasets and GNN methods. To verify that this increase in performance is not only due to the added capacity, we also perform the same modification for random splits of the nodes, which does not lead to any improvement.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.