Computer Science > Cryptography and Security
[Submitted on 15 Dec 2023 (v1), last revised 18 Dec 2023 (this version, v2)]
Title:No-Skim: Towards Efficiency Robustness Evaluation on Skimming-based Language Models
View PDF HTML (experimental)Abstract:To reduce the computation cost and the energy consumption in large language models (LLM), skimming-based acceleration dynamically drops unimportant tokens of the input sequence progressively along layers of the LLM while preserving the tokens of semantic importance. However, our work for the first time reveals the acceleration may be vulnerable to Denial-of-Service (DoS) attacks. In this paper, we propose No-Skim, a general framework to help the owners of skimming-based LLM to understand and measure the robustness of their acceleration scheme. Specifically, our framework searches minimal and unnoticeable perturbations at character-level and token-level to generate adversarial inputs that sufficiently increase the remaining token ratio, thus increasing the computation cost and energy consumption. We systematically evaluate the vulnerability of the skimming acceleration in various LLM architectures including BERT and RoBERTa on the GLUE benchmark. In the worst case, the perturbation found by No-Skim substantially increases the running cost of LLM by over 145% on average. Moreover, No-Skim extends the evaluation framework to various scenarios, making the evaluation conductible with different level of knowledge.
Submission history
From: Shengyao Zhang [view email][v1] Fri, 15 Dec 2023 02:42:05 UTC (1,514 KB)
[v2] Mon, 18 Dec 2023 02:50:02 UTC (1,514 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.