Statistics > Computation
[Submitted on 14 Dec 2023 (v1), last revised 21 Jun 2024 (this version, v3)]
Title:Fast sampling from constrained spaces using the Metropolis-adjusted Mirror Langevin algorithm
View PDF HTML (experimental)Abstract:We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algorithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to the inclusion of this filter, our method is unbiased relative to the target, while known discretisations of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias. For this algorithm, we also give upper bounds for the number of iterations taken to mix to a constrained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better dependence on the error tolerance for approximate constrained sampling. We also present numerical experiments that corroborate our theoretical findings.
Submission history
From: Vishwak Srinivasan [view email][v1] Thu, 14 Dec 2023 11:11:58 UTC (1,938 KB)
[v2] Fri, 9 Feb 2024 21:37:42 UTC (1,940 KB)
[v3] Fri, 21 Jun 2024 15:52:52 UTC (1,940 KB)
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.