Condensed Matter > Soft Condensed Matter
[Submitted on 14 Dec 2023]
Title:Real-time Autonomous Control of a Continuous Macroscopic Process as Demonstrated by Plastic Forming
View PDFAbstract:To meet the demands for more adaptable and expedient approaches to augment both research and manufacturing, we report an autonomous system using real-time in-situ characterization and an autonomous, decision-making processer based on an active learning algorithm. This system was applied to a plastic film forming system to highlight its efficiency and accuracy in determining the process conditions for specified target film dimensions, importantly, without any human intervention. Application of this system towards nine distinct film dimensions demonstrated the system ability to quickly determine the appropriate and stable process conditions (average 11 characterization-adjustment iterations, 19 minutes) and the ability to avoid traps, such as repetitive over-correction. Furthermore, comparison of the achieved film dimensions to the target values showed a high accuracy (R2 = 0.87, 0.90) for film width and thickness, respectively. In addition, the use of an active learning algorithm afforded our system to proceed optimization with zero initial training data, which was unavailable due to the complex relationships between the control factors (material supply rate, applied force, material viscosity) within the plastic forming process. As our system is intrinsically general and can be applied to any most material processes, these results have significant implications in accelerating both research and industrial processes.
Current browse context:
cond-mat.soft
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.