Computer Science > Robotics
[Submitted on 17 Nov 2023]
Title:Autonomous Port Navigation With Ranging Sensors Using Model-Based Reinforcement Learning
View PDFAbstract:Autonomous shipping has recently gained much interest in the research community. However, little research focuses on inland - and port navigation, even though this is identified by countries such as Belgium and the Netherlands as an essential step towards a sustainable future. These environments pose unique challenges, since they can contain dynamic obstacles that do not broadcast their location, such as small vessels, kayaks or buoys. Therefore, this research proposes a navigational algorithm which can navigate an inland vessel in a wide variety of complex port scenarios using ranging sensors to observe the environment. The proposed methodology is based on a machine learning approach that has recently set benchmark results in various domains: model-based reinforcement learning. By randomizing the port environments during training, the trained model can navigate in scenarios that it never encountered during training. Furthermore, results show that our approach outperforms the commonly used dynamic window approach and a benchmark model-free reinforcement learning algorithm. This work is therefore a significant step towards vessels that can navigate autonomously in complex port scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.