Quantum Physics
[Submitted on 8 Dec 2023]
Title:A Hybrid Classical-Quantum HPC Workload
View PDF HTML (experimental)Abstract:A strategy for the orchestration of hybrid classical-quantum workloads on supercomputers featuring quantum devices is proposed. The method makes use of heterogeneous job launches with Slurm to interleave classical and quantum computation, thereby reducing idle time of the quantum components. To better understand the possible shortcomings and bottlenecks of such a workload, an example application is investigated that offloads parts of the computation to a quantum device. It executes on a classical HPC system, with a server mimicking the quantum device, within the MPMD paradigm in Slurm. Quantum circuits are synthesized by means of the Classiq software suite according to the needs of the scientific application, and the Qiskit Aer circuit simulator computes the state vectors. The HHL quantum algorithm for linear systems of equations is used to solve the algebraic problem from the discretization of a linear differential equation. Communication takes place over the MPI, which is broadly employed in the HPC community. Extraction of state vectors and circuit synthesis are the most time consuming, while communication is negligible in this setup. The present test bed serves as a basis for more advanced hybrid workloads eventually involving a real quantum device.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.