Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Dec 2023]
Title:PointJEM: Self-supervised Point Cloud Understanding for Reducing Feature Redundancy via Joint Entropy Maximization
View PDFAbstract:Most deep learning-based point cloud processing methods are supervised and require large scale of labeled data. However, manual labeling of point cloud data is laborious and time-consuming. Self-supervised representation learning can address the aforementioned issue by learning robust and generalized representations from unlabeled datasets. Nevertheless, the embedded features obtained by representation learning usually contain redundant information, and most current methods reduce feature redundancy by linear correlation constraints. In this paper, we propose PointJEM, a self-supervised representation learning method applied to the point cloud field. PointJEM comprises an embedding scheme and a loss function based on joint entropy. The embedding scheme divides the embedding vector into different parts, each part can learn a distinctive feature. To reduce redundant information in the features, PointJEM maximizes the joint entropy between the different parts, thereby rendering the learned feature variables pairwise independent. To validate the effectiveness of our method, we conducted experiments on multiple datasets. The results demonstrate that our method can significantly reduce feature redundancy beyond linear correlation. Furthermore, PointJEM achieves competitive performance in downstream tasks such as classification and segmentation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.