Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 6 Dec 2023 (v1), last revised 21 Dec 2023 (this version, v2)]
Title:nbi: the Astronomer's Package for Neural Posterior Estimation
View PDF HTML (experimental)Abstract:Despite the promise of Neural Posterior Estimation (NPE) methods in astronomy, the adaptation of NPE into the routine inference workflow has been slow. We identify three critical issues: the need for custom featurizer networks tailored to the observed data, the inference inexactness, and the under-specification of physical forward models. To address the first two issues, we introduce a new framework and open-source software nbi (Neural Bayesian Inference), which supports both amortized and sequential NPE. First, nbi provides built-in "featurizer" networks with demonstrated efficacy on sequential data, such as light curve and spectra, thus obviating the need for this customization on the user end. Second, we introduce a modified algorithm SNPE-IS, which facilities asymptotically exact inference by using the surrogate posterior under NPE only as a proposal distribution for importance sampling. These features allow nbi to be applied off-the-shelf to astronomical inference problems involving light curves and spectra. We discuss how nbi may serve as an effective alternative to existing methods such as Nested Sampling. Our package is at this https URL.
Submission history
From: Keming Zhang [view email][v1] Wed, 6 Dec 2023 19:00:00 UTC (16 KB)
[v2] Thu, 21 Dec 2023 20:37:57 UTC (17 KB)
Current browse context:
astro-ph.IM
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.