Computer Science > Information Theory
[Submitted on 5 Dec 2023]
Title:A Neural Receiver for 5G NR Multi-user MIMO
View PDFAbstract:We introduce a neural network (NN)-based multiuser multiple-input multiple-output (MU-MIMO) receiver with 5G New Radio (5G NR) physical uplink shared channel (PUSCH) compatibility. The NN architecture is based on convolution layers to exploit the time and frequency correlation of the channel and a graph neural network (GNN) to handle multiple users. The proposed architecture adapts to an arbitrary number of sub-carriers and supports a varying number of multiple-input multiple-output (MIMO) layers and users without the need for any retraining. The receiver operates on an entire 5G NR slot, i.e., processes the entire received orthogonal frequency division multiplexing (OFDM) time-frequency resource grid by jointly performing channel estimation, equalization, and demapping. The proposed architecture operates less than 1 dB away from a baseline using linear minimum mean square error (LMMSE) channel estimation with K-best detection but benefits from a significantly lower computational complexity. We show the importance of a carefully designed training process such that the trained receiver is universal for a wide range of different unseen channel conditions. Finally, we demonstrate the results of a hardware-in-the-loop verification based on 3GPP compliant conformance test scenarios.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.