Computer Science > Computation and Language
[Submitted on 3 Dec 2023]
Title:On Significance of Subword tokenization for Low Resource and Efficient Named Entity Recognition: A case study in Marathi
View PDFAbstract:Named Entity Recognition (NER) systems play a vital role in NLP applications such as machine translation, summarization, and question-answering. These systems identify named entities, which encompass real-world concepts like locations, persons, and organizations. Despite extensive research on NER systems for the English language, they have not received adequate attention in the context of low resource languages. In this work, we focus on NER for low-resource language and present our case study in the context of the Indian language Marathi. The advancement of NLP research revolves around the utilization of pre-trained transformer models such as BERT for the development of NER models. However, we focus on improving the performance of shallow models based on CNN, and LSTM by combining the best of both worlds. In the era of transformers, these traditional deep learning models are still relevant because of their high computational efficiency. We propose a hybrid approach for efficient NER by integrating a BERT-based subword tokenizer into vanilla CNN/LSTM models. We show that this simple approach of replacing a traditional word-based tokenizer with a BERT-tokenizer brings the accuracy of vanilla single-layer models closer to that of deep pre-trained models like BERT. We show the importance of using sub-word tokenization for NER and present our study toward building efficient NLP systems. The evaluation is performed on L3Cube-MahaNER dataset using tokenizers from MahaBERT, MahaGPT, IndicBERT, and mBERT.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.