Computer Science > Sound
[Submitted on 4 Dec 2023]
Title:A text-dependent speaker verification application framework based on Chinese numerical string corpus
View PDFAbstract:Researches indicate that text-dependent speaker verification (TD-SV) often outperforms text-independent verification (TI-SV) in short speech scenarios. However, collecting large-scale fixed text speech data is challenging, and as speech length increases, factors like sentence rhythm and pauses affect TDSV's sensitivity to text sequence. Based on these factors, We propose the hypothesis that strategies such as more fine-grained pooling methods on time scales and decoupled representations of speech speaker embedding and text embedding are more suitable for TD-SV. We have introduced an end-to-end TD-SV system based on a dataset comprising longer Chinese numerical string texts. It contains a text embedding network, a speaker embedding network, and back-end fusion. First, we recorded a dataset consisting of long Chinese numerical text named SHAL, which is publicly available on the Open-SLR website. We addressed the issue of dataset scarcity by augmenting it using Tacotron2 and HiFi-GAN. Next, we introduced a dual representation of speech with text embedding and speaker embedding. In the text embedding network, we employed an enhanced Transformer and introduced a triple loss that includes text classification loss, CTC loss, and decoder loss. For the speaker embedding network, we enhanced a sliding window attentive statistics pooling (SWASP), combined with attentive statistics pooling (ASP) to create a multi-scale pooling method. Finally, we fused text embedding and speaker embedding. Our pooling methods achieved an equal error rate (EER) performance improvement of 49.2% on Hi-Mia and 75.0% on SHAL, respectively.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.