Computer Science > Cryptography and Security
[Submitted on 21 Nov 2023 (v1), last revised 18 Jul 2024 (this version, v2)]
Title:FBChain: A Blockchain-based Federated Learning Model with Efficiency and Secure Communication
View PDF HTML (experimental)Abstract:Privacy and security in the parameter transmission process of federated learning are currently among the most prominent concerns. However, there are two thorny problems caused by unprotected communication methods: "parameter-leakage" and "inefficient-communication". This article proposes Blockchain-based Federated Learning (FBChain) model for federated learning parameter communication to overcome the above two problems. First, we utilize the immutability of blockchain to store the global model and hash value of local model parameters in case of tampering during the communication process, protect data privacy by encrypting parameters, and verify data consistency by comparing the hash values of local parameters, thus addressing the "parameter-leakage" problem. Second, the Proof of Weighted Link Speed (PoWLS) consensus algorithm comprehensively selects nodes with the higher weighted link speed to aggregate global model and package blocks, thereby solving the "inefficient-communication" problem. Experimental results demonstrate the effectiveness of our proposed FBChain model and its ability to improve model communication efficiency in federated learning.
Submission history
From: Yang Li [view email][v1] Tue, 21 Nov 2023 01:36:35 UTC (1,288 KB)
[v2] Thu, 18 Jul 2024 17:41:28 UTC (243 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.