Computer Science > Cryptography and Security
[Submitted on 9 Nov 2023]
Title:Hypergraph Topological Features for Autoencoder-Based Intrusion Detection for Cybersecurity Data
View PDFAbstract:In this position paper, we argue that when hypergraphs are used to capture multi-way local relations of data, their resulting topological features describe global behaviour. Consequently, these features capture complex correlations that can then serve as high fidelity inputs to autoencoder-driven anomaly detection pipelines. We propose two such potential pipelines for cybersecurity data, one that uses an autoencoder directly to determine network intrusions, and one that de-noises input data for a persistent homology system, PHANTOM. We provide heuristic justification for the use of the methods described therein for an intrusion detection pipeline for cyber data. We conclude by showing a small example over synthetic cyber attack data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.