Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 30 Nov 2023]
Title:Perception of Misalignment States for Sky Survey Telescopes with the Digital Twin and the Deep Neural Networks
View PDFAbstract:Sky survey telescopes play a critical role in modern astronomy, but misalignment of their optical elements can introduce significant variations in point spread functions, leading to reduced data quality. To address this, we need a method to obtain misalignment states, aiding in the reconstruction of accurate point spread functions for data processing methods or facilitating adjustments of optical components for improved image quality. Since sky survey telescopes consist of many optical elements, they result in a vast array of potential misalignment states, some of which are intricately coupled, posing detection challenges. However, by continuously adjusting the misalignment states of optical elements, we can disentangle coupled states. Based on this principle, we propose a deep neural network to extract misalignment states from continuously varying point spread functions in different field of views. To ensure sufficient and diverse training data, we recommend employing a digital twin to obtain data for neural network training. Additionally, we introduce the state graph to store misalignment data and explore complex relationships between misalignment states and corresponding point spread functions, guiding the generation of training data from experiments. Once trained, the neural network estimates misalignment states from observation data, regardless of the impacts caused by atmospheric turbulence, noise, and limited spatial sampling rates in the detector. The method proposed in this paper could be used to provide prior information for the active optics system and the optical system alignment.
Current browse context:
astro-ph.IM
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.