Computer Science > Machine Learning
[Submitted on 29 Nov 2023]
Title:The Forecastability of Underlying Building Electricity Demand from Time Series Data
View PDFAbstract:Forecasting building energy consumption has become a promising solution in Building Energy Management Systems for energy saving and optimization. Furthermore, it can play an important role in the efficient management of the operation of a smart grid. Different data-driven approaches to forecast the future energy demand of buildings at different scale, and over various time horizons, can be found in the scientific literature, including extensive Machine Learning and Deep Learning approaches. However, the identification of the most accurate forecaster model which can be utilized to predict the energy demand of such a building is still this http URL this paper, the design and implementation of a data-driven approach to predict how forecastable the future energy demand of a building is, without first utilizing a data-driven forecasting model, is presented. The investigation utilizes a historical electricity consumption time series data set with a half-hour interval that has been collected from a group of residential buildings located in the City of London, United Kingdom
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.