Computer Science > Networking and Internet Architecture
[Submitted on 29 Nov 2023]
Title:Large Language Models for Networking: Applications, Enabling Techniques, and Challenges
View PDFAbstract:The rapid evolution of network technologies and the growing complexity of network tasks necessitate a paradigm shift in how networks are designed, configured, and managed. With a wealth of knowledge and expertise, large language models (LLMs) are one of the most promising candidates. This paper aims to pave the way for constructing domain-adapted LLMs for networking. Firstly, we present potential LLM applications for vertical network fields and showcase the mapping from natural language to network language. Then, several enabling technologies are investigated, including parameter-efficient finetuning and prompt engineering. The insight is that language understanding and tool usage are both required for network LLMs. Driven by the idea of embodied intelligence, we propose the ChatNet, a domain-adapted network LLM framework with access to various external network tools. ChatNet can reduce the time required for burdensome network planning tasks significantly, leading to a substantial improvement in efficiency. Finally, key challenges and future research directions are highlighted.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.