Computer Science > Neural and Evolutionary Computing
[Submitted on 5 Nov 2023 (v1), last revised 21 Nov 2024 (this version, v3)]
Title:Brain-Inspired Efficient Pruning: Exploiting Criticality in Spiking Neural Networks
View PDF HTML (experimental)Abstract:Spiking Neural Networks (SNNs) have gained significant attention due to the energy-efficient and multiplication-free characteristics. Despite these advantages, deploying large-scale SNNs on edge hardware is challenging due to limited resource availability. Network pruning offers a viable approach to compress the network scale and reduce hardware resource requirements for model deployment. However, existing SNN pruning methods cause high pruning costs and performance loss because they lack efficiency in processing the sparse spike representation of SNNs. In this paper, inspired by the critical brain hypothesis in neuroscience and the high biological plausibility of SNNs, we explore and leverage criticality to facilitate efficient pruning in deep SNNs. We firstly explain criticality in SNNs from the perspective of maximizing feature information entropy. Second, We propose a low-cost metric for assess neuron criticality in feature transmission and design a pruning-regeneration method that incorporates this criticality into the pruning process. Experimental results demonstrate that our method achieves higher performance than the current state-of-the-art (SOTA) method with up to 95.26\% reduction of pruning cost. The criticality-based regeneration process efficiently selects potential structures and facilitates consistent feature representation.
Submission history
From: Shuo Chen [view email][v1] Sun, 5 Nov 2023 12:20:29 UTC (555 KB)
[v2] Sat, 20 Jan 2024 05:20:47 UTC (195 KB)
[v3] Thu, 21 Nov 2024 06:20:46 UTC (249 KB)
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.