Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Nov 2023 (v1), last revised 4 Nov 2024 (this version, v2)]
Title:Local Concept Embeddings for Analysis of Concept Distributions in DNN Feature Spaces
View PDF HTML (experimental)Abstract:Insights into the learned latent representations are imperative for verifying deep neural networks (DNNs) in critical computer vision (CV) tasks. Therefore, state-of-the-art supervised Concept-based eXplainable Artificial Intelligence (C-XAI) methods associate user-defined concepts like ``car'' each with a single vector in the DNN latent space (concept embedding vector). In the case of concept segmentation, these linearly separate between activation map pixels belonging to a concept and those belonging to background. Existing methods for concept segmentation, however, fall short of capturing sub-concepts (e.g., ``proximate car'' and ``distant car''), and concept overlap (e.g., between ``bus'' and ``truck''). In other words, they do not capture the full distribution of concept representatives in latent space. For the first time, this work shows that these simplifications are frequently broken and that distribution information can be particularly useful for understanding DNN-learned notions of sub-concepts, concept confusion, and concept outliers. To allow exploration of learned concept distributions, we propose a novel local concept analysis framework. Instead of optimizing a single global concept vector on the complete dataset, it generates a local concept embedding (LoCE) vector for each individual sample. We use the distribution formed by LoCEs to explore the latent concept distribution by fitting Gaussian mixture models (GMMs), hierarchical clustering, and concept-level information retrieval and outlier detection. Despite its context sensitivity, our method's concept segmentation performance is competitive to global baselines. Analysis results are obtained on two datasets and five diverse vision DNN architectures, including vision transformers (ViTs).
Submission history
From: Georgii Mikriukov [view email][v1] Fri, 24 Nov 2023 12:22:00 UTC (2,890 KB)
[v2] Mon, 4 Nov 2024 12:48:38 UTC (14,843 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.