Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Nov 2023]
Title:Robustness-Reinforced Knowledge Distillation with Correlation Distance and Network Pruning
View PDFAbstract:The improvement in the performance of efficient and lightweight models (i.e., the student model) is achieved through knowledge distillation (KD), which involves transferring knowledge from more complex models (i.e., the teacher model). However, most existing KD techniques rely on Kullback-Leibler (KL) divergence, which has certain limitations. First, if the teacher distribution has high entropy, the KL divergence's mode-averaging nature hinders the transfer of sufficient target information. Second, when the teacher distribution has low entropy, the KL divergence tends to excessively focus on specific modes, which fails to convey an abundant amount of valuable knowledge to the student. Consequently, when dealing with datasets that contain numerous confounding or challenging samples, student models may struggle to acquire sufficient knowledge, resulting in subpar performance. Furthermore, in previous KD approaches, we observed that data augmentation, a technique aimed at enhancing a model's generalization, can have an adverse impact. Therefore, we propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning. This approach enables KD to effectively incorporate data augmentation for performance improvement. Extensive experiments on various datasets, including CIFAR-100, FGVR, TinyImagenet, and ImageNet, demonstrate our method's superiority over current state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.