Computer Science > Neural and Evolutionary Computing
[Submitted on 18 Nov 2023]
Title:Pursing the Sparse Limitation of Spiking Deep Learning Structures
View PDFAbstract:Spiking Neural Networks (SNNs), a novel brain-inspired algorithm, are garnering increased attention for their superior computation and energy efficiency over traditional artificial neural networks (ANNs). To facilitate deployment on memory-constrained devices, numerous studies have explored SNN pruning. However, these efforts are hindered by challenges such as scalability challenges in more complex architectures and accuracy degradation. Amidst these challenges, the Lottery Ticket Hypothesis (LTH) emerges as a promising pruning strategy. It posits that within dense neural networks, there exist winning tickets or subnetworks that are sparser but do not compromise performance. To explore a more structure-sparse and energy-saving model, we investigate the unique synergy of SNNs with LTH and design two novel spiking winning tickets to push the boundaries of sparsity within SNNs. Furthermore, we introduce an innovative algorithm capable of simultaneously identifying both weight and patch-level winning tickets, enabling the achievement of sparser structures without compromising on the final model's performance. Through comprehensive experiments on both RGB-based and event-based datasets, we demonstrate that our spiking lottery ticket achieves comparable or superior performance even when the model structure is extremely sparse.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.