Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Nov 2023 (v1), last revised 19 Feb 2024 (this version, v2)]
Title:LLMs as Visual Explainers: Advancing Image Classification with Evolving Visual Descriptions
View PDFAbstract:Vision-language models (VLMs) offer a promising paradigm for image classification by comparing the similarity between images and class embeddings. A critical challenge lies in crafting precise textual representations for class names. While previous studies have leveraged recent advancements in large language models (LLMs) to enhance these descriptors, their outputs often suffer from ambiguity and inaccuracy. We attribute this to two primary factors: 1) the reliance on single-turn textual interactions with LLMs, leading to a mismatch between generated text and visual concepts for VLMs; 2) the oversight of the inter-class relationships, resulting in descriptors that fail to differentiate similar classes effectively. In this paper, we propose a novel framework that integrates LLMs and VLMs to find the optimal class descriptors. Our training-free approach develops an LLM-based agent with an evolutionary optimization strategy to iteratively refine class descriptors. We demonstrate our optimized descriptors are of high quality which effectively improves classification accuracy on a wide range of benchmarks. Additionally, these descriptors offer explainable and robust features, boosting performance across various backbone models and complementing fine-tuning-based methods.
Submission history
From: Songhao Han [view email][v1] Mon, 20 Nov 2023 16:37:45 UTC (2,952 KB)
[v2] Mon, 19 Feb 2024 09:24:44 UTC (2,976 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.